329 research outputs found

    High-performance Parallel Solver for Integral Equations of Electromagnetics Based on Galerkin Method

    Full text link
    A new parallel solver for the volumetric integral equations (IE) of electrodynamics is presented. The solver is based on the Galerkin method which ensures the convergent numerical solution. The main features include: (i) the memory usage is 8 times lower, compared to analogous IE based algorithms, without additional restriction on the background media; (ii) accurate and stable method to compute matrix coefficients corresponding to the IE; (iii) high degree of parallelism. The solver's computational efficiency is shown on a problem of magnetotelluric sounding of the high conductivity contrast media. A good agreement with the results obtained with the second order finite element method is demonstrated. Due to effective approach to parallelization and distributed data storage the program exhibits perfect scalability on different hardware platforms.Comment: The main results of this paper were presented at IAMG 2015 conference Frieberg, Germany. 28 pages, 11 figure

    Direct Method Solution of 3-D Magnetotelluric Modeling Using Vector Finite Element Method

    Get PDF
    As exploration is forced into more difficult areas with complex three-dimensional (3-D) structural environments, the importance of 3-D magnetotelluric (MT) modeling is essential for the correct interpretation of MT data. To reduce the complexity of the calculations introduced by 3-D models, iterative forward calculation of MT response functions is used as basis for inversion of 3-D MT data. This paper proposes an alternative procedure for making reliable 3-D MT modeling codes for forward calculation that is not only effective but also accurate. This is accomplished by using a direct method to solve the linear systems arising from the discretization process in the vector finite element approach. The vector finite element method is known for its capability of overcoming difficulties in modeling caused by possible jumps of normal components across discontinuities of material properties. Meanwhile, by using a direct method rather than an iterative method, the process of solving the linear equations does not suffer from slow convergence. Here, we present a comparison between our modeling codes and codes based on a different approach. In the resulting 3-D MT responses it was found that the proposed method has high accuracy

    3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms

    Full text link
    We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general

    3D Magnetotelluric Modeling Using High-Order Tetrahedral Nédélec Elements on Massively Parallel Computing Platforms

    Get PDF
    We present a routine for 3D magnetotelluric (MT) modeling based upon high-order edge finite element method (HEFEM), tailored and unstructured tetrahedral meshes, and high-performance computing (HPC). This implementation extends the PETGEM modeller capabilities, initially developed for active-source electromagnetic methods in frequency-domain. We assess the accuracy, robustness, and performance of the code using a set of reference models developed by the MT community in well-known reported workshops. The scale and geological properties of these 3D MT setups are challenging, making them ideal for addressing a rigorous validation. Our numerical assessment proves that this new algorithm can produce the expected solutions for arbitrarily 3D MT models. Also, our extensive experimental results reveal four main insights: (1) high-order discretizations in conjunction with tailored meshes can offer excellent accuracy; (2) a rigorous mesh design based on the skin-depth principle can be beneficial for the solution of the 3D MT problem in terms of numerical accuracy and run-time; (3) high-order polynomial basis functions achieve better speed-up and parallel efficiency ratios than low-order polynomial basis functions on cutting-edge HPC platforms; (4) a triple helix approach based on HEFEM, tailored meshes, and HPC can be extremely competitive for the solution of realistic and complex 3D MT models and geophysical electromagnetics in general.This project has been 65% cofinanced by the European Regional Development Fund (ERDF) through the Interreg V-A Spain–France– Andorra program (POCTEFA2014-2020). POCTEFA aims to reinforce the economic and social integration of the French–Spanish–Andorran border. Its support is focused on developing economic, social and environmental cross-border activities through joint strategies favoring sustainable territorial development. BSC authors received funding from the European Union’s Horizon 2020 programme, grant agreement N◦828947 and N◦777778, and from the Mexican Department of Energy, CONACYT-SENER Hidrocarburos grant agreement N◦B-S-69926

    Dimensionally adaptive hp-finite element simulation and inversion of 2D magnetotelluric measurements

    Get PDF
    Magnetotelluric (MT) problems often contain different subdomains where the conductivity of the media depends upon one, two, or three spatial variables. Traditionally, when a MT problem incorporates a three-dimensional (3D) subdomain, the numerical method employed for simulation and inversion was 3D over then entire domain. In here, we propose to take advantage of the possibly lower dimensionality of certain subdomains during the inversion process. By doing so, we obtain significant computational savings (up to 75% in some scenarios) and increased accuracy on the results. We numerically illustrate this method by employing two dimensional (2D) computations based on a multi-goal oriented . hp-adaptive Finite Element Method (FEM) that exhibits superior convergence properties. Additionally, we provide a formulation for implementing an efficient adjoint based method for the computation of the derivatives of the impedance, and we show the importance of the (a) proper selection of the inversion variable, and (b) the advantages of using both the Transverse Electric (TE) and Transverse Magnetic (TM) measurements for the proper inversion of MT data

    A summary of my twenty years of research according to Google Scholars

    Get PDF
    I am David Pardo, a researcher from Spain working mainly on numerical analysis applied to geophysics. I am 40 years old, and over a decade ago, I realized that my performance as a researcher was mainly evaluated based on a number called \h-index". This single number contains simultaneously information about the number of publications and received citations. However, dif- ferent h-indices associated to my name appeared in di erent webpages. A quick search allowed me to nd the most convenient (largest) h-index in my case. It corresponded to Google Scholars. In this work, I naively analyze a few curious facts I found about my Google Scholars and, at the same time, this manuscript serves as an experiment to see if it may serve to increase my Google Scholars h-index

    Three-dimensional finite element simulation of magnetotelluric fields on unstructured grids: on the efficient formulation of the boundary value problem

    Get PDF
    In der vorliegenden Arbeit werden verschiedene Randwertprobleme zur Beschreibung der Ausbreitung magnetotellurischer Felder mit Hilfe der Finite-Elemente-Methode numerisch gelöst. Die zwei- und dreidimensionalen Randwertprobleme zur Simulation des elektrischen oder des magnetischen Feldes, des magnetischen Vektorpotentials und des elektrischen Skalarpotentials, des magnetischen Vektorpotentials allein oder des anomalen magnetischen Vektorpotentials werden aus den Maxwell-Gleichungen hergeleitet. Auf Grundlage von Anwendung der Konvergenztheorie auf die Finite-Elemente-Lösung werden Konvergenzstudien für zweidimensionale Modelle des homogenen und des geschichteten Halbraums sowie für das dreidimensionale COMMEMI 3-D-2-Modell durchgeführt. Diese werden genutzt, um die Randwertprobleme hinsichtlich ihrer Effizienz zu bewerten. Außerdem liefern Konvergenzstudien eine Abschätzung des lokalen Fehlers der numerischen Lösung für ein realitätsnahes Modell des Vulkans Stromboli und seiner Umgebung, welches digitale Geländedaten enthält.This thesis presents the numerical finite-element solution of different formulations of the magnetotelluric boundary value problem. Based on Maxwell\'s equations, the two-dimensional and three-dimensional boundary value problems are derived in terms of the electric or the magnetic field, the magnetic vector and the electric scalar potential, the magnetic vector potential only, or the anomalous magnetic vector potential. To evaluate their efficiency, convergence studies are performed for the two-dimensional models of the homogeneous and the layered halfspace as well as for the COMMEMI-3-D-2 model. Moreover, convergence studies yield estimates of the local error of the numerical solution for a close-to-reality model of Stromboli volcano incorporating digital terrain data

    A summary of my twenty years of research according to Google Scholars

    Get PDF
    I am David Pardo, a researcher from Spain working mainly on numerical analysis applied to geophysics. I am 40 years old, and over a decade ago, I realized that my performance as a researcher was mainly evaluated based on a number called \h-index". This single number contains simultaneously information about the number of publications and received citations. However, dif- ferent h-indices associated to my name appeared in di erent webpages. A quick search allowed me to nd the most convenient (largest) h-index in my case. It corresponded to Google Scholars. In this work, I naively analyze a few curious facts I found about my Google Scholars and, at the same time, this manuscript serves as an experiment to see if it may serve to increase my Google Scholars h-index

    The role of electrical anisotropy in magnetotelluric responses: From modelling and dimensionality analysis to inversion and interpretation

    Get PDF
    The study of electrical anisotropy in the Earth, defined as the electrical conductivity varying with orientation, has experienced important advances in the last years regarding the investigation of its origins, how to identify and model it, and how it can be related to other parameters, such as seismic and mechanical anisotropy. This paper provides a theoretical background and a review of the current state of the art of electrical anisotropy using electromagnetic methods in the frequency domain, focusing mainly on magnetotellurics. The aspects that will be considered are the modelling of the electromagnetic fields with anisotropic structures, the analysis of their responses to identify these structures, and how to properly use these responses in inversion and interpretation. Also, an update on the most recent case studies involving anisotropy is provided
    • …
    corecore