533 research outputs found

    Relaxing Fundamental Assumptions in Iterative Learning Control

    Full text link
    Iterative learning control (ILC) is perhaps best decribed as an open loop feedforward control technique where the feedforward signal is learned through repetition of a single task. As the name suggests, given a dynamic system operating on a finite time horizon with the same desired trajectory, ILC aims to iteratively construct the inverse image (or its approximation) of the desired trajectory to improve transient tracking. In the literature, ILC is often interpreted as feedback control in the iteration domain due to the fact that learning controllers use information from past trials to drive the tracking error towards zero. However, despite the significant body of literature and powerful features, ILC is yet to reach widespread adoption by the control community, due to several assumptions that restrict its generality when compared to feedback control. In this dissertation, we relax some of these assumptions, mainly the fundamental invariance assumption, and move from the idea of learning through repetition to two dimensional systems, specifically repetitive processes, that appear in the modeling of engineering applications such as additive manufacturing, and sketch out future research directions for increased practicality: We develop an L1 adaptive feedback control based ILC architecture for increased robustness, fast convergence, and high performance under time varying uncertainties and disturbances. Simulation studies of the behavior of this combined L1-ILC scheme under iteration varying uncertainties lead us to the robust stability analysis of iteration varying systems, where we show that these systems are guaranteed to be stable when the ILC update laws are designed to be robust, which can be done using existing methods from the literature. As a next step to the signal space approach adopted in the analysis of iteration varying systems, we shift the focus of our work to repetitive processes, and show that the exponential stability of a nonlinear repetitive system is equivalent to that of its linearization, and consequently uniform stability of the corresponding state space matrix.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133232/1/altin_1.pd

    Data Driven Distributed Bipartite Consensus Tracking for Nonlinear Multiagent Systems via Iterative Learning Control

    Get PDF
    This article explores a data-driven distributed bipartite consensus tracking (DBCT) problem for discrete-time multi-agent systems (MASs) with coopetition networks under repeatable operations. To solve this problem, a time-varying linearization model along the iteration axis is first established by using the measurement input and output (I/O) data of agents. Then a data-driven distributed bipartite consensus iterative learning control (DBCILC) algorithm is proposed considering both fixed and switching topologies. Compared with existing bipartite consensus, the main characteristic is to construct the proposed control protocol without requiring any explicit or implicit information of MASs’ mathematical model. The difference from existing iterative learning control (ILC) approaches is that both the cooperative interactions and antagonistic interactions, and time-varying switching topologies are considered. Furthermore, through rigorous theoretical analysis, the proposed DBCILC approach can guarantee the bipartite consensus reducing tracking errors in the limited iteration steps. Moreover, although not all agents can receive information from the virtual leader directly, the proposed distributed scheme can maintain the performance and reduce the costs of communication. The results of three examples further illustrate the correctness, effectiveness, and applicability of the proposed algorithm

    Event-Triggered Distributed Data-Driven Iterative Learning Bipartite Formation Control for Unknown Nonlinear Multiagent Systems

    Get PDF
    In this study, we investigate the event-triggering time-varying trajectory bipartite formation tracking problem for a class of unknown nonaffine nonlinear discrete-time multiagent systems (MASs). We first obtain an equivalent linear data model with a dynamic parameter of each agent by employing the pseudo-partial-derivative technique. Then, we propose an event-triggered distributed model-free adaptive iterative learning bipartite formation control scheme by using the input/output data of MASs without employing either the plant structure or any knowledge of the dynamics. To improve the flexibility and network communication resource utilization, we construct an observer-based event-triggering mechanism with a dead-zone operator. Furthermore, we rigorously prove the convergence of the proposed algorithm, where each agent’s time-varying trajectory bipartite formation tracking error is reduced to a small range around zero. Finally, four simulation studies further validate the designed control approach’s effectiveness, demonstrating that the proposed scheme is also suitable for the homogeneous MASs to achieve time-varying trajectory bipartite formation tracking

    Application of Norm Optimal Iterative Learning Control to Quadrotor Unmanned Aerial Vehicle for monitoring overhead power system

    Get PDF
    Wind disturbances and noise severely affect Unmanned Aerial Vehicles (UAV) when monitoring and find in faults in overhead power lines. Accordingly, we propose repetitive learning as a new solution for the problem. In particular, the performance of Iterative Learning Control (ILC)that are based on optimal approaches are examined, namely (i) Gradient-based ILC and (ii) Norm Optimal ILC. When considering the repetitive nature of fault-findin tasks for electrical overhead power lines, this study develops, implements and evaluates optimal ILC algorithms for a UAV model.Moreover, we suggest attempting a learning gain variation on the standard optimal algorithms instead of heuristically selecting from the previous range. The results of both simulations and experiments o gradient-based norm optimal control reveal that the proposed ILC algorithm has not only contributed to good trajectory tracking, but also good convergence speed and the ability to cope with exogenous disturbances such as wind gusts

    Flexible adaptation of iterative learning control with applications to synthetic bone graft manufacturing

    Get PDF
    Additive manufacturing processes are powerful tools; they are capable of fabricating structures without expensive structure specific tooling -- therefore structure designs can efficiently change from run-to-run -- and they can integrate multiple distinct materials into a single structure. This work investigates one such additive manufacturing process, micro-Robotic Deposition (μ\muRD), and its utility in fabricating advanced architecture synthetic bone grafts. These bone grafts, also known as synthetic bone scaffolds, are highly porous three-dimensional structures that provide a matrix to support the natural process of bone remodeling. Ideally, the synthetic scaffold will stimulate complete bone healing in a skeletal defect site and also resorb with time so that only natural tissue remains. The objective of this research is to develop methods to integrate different regions with different porous microstructures into a single scaffold; there is evidence that scaffolds with designed regions of specific microstructures can be used to elicit a strong and directed bone ingrowth response that improves bone ingrowth rate and quality. The key contribution of this work is the development of a control algorithm that precisely places different build materials in specified locations, thereby the fabrication of advanced architecture scaffolds is feasible. Under previous control methods, designs were relegated to be composed of a single material. The control algorithm developed in this work is an adaptation of Iterative Learning Control (ILC), a control method that is typically best suited for mass manufacturing applications. This adaptation reorients the ILC framework such that it is more amenable to additive manufacturing systems, such as μ\muRD. Control efficacy is demonstrated by the fabrication of advanced architecture scaffolds. Scaffolds with contoured forms, multiple domains with distinct porous microstructures, and hollow cavities are feasible when the developed controller is used in conjunction with a novel manufacturing workflow in which scaffolds are filled within patterned molds that support overhanging features. An additional application demonstrates controller performance on the robot positioning problem; this work has implications for additive manufacturing in general

    Iterative learning control in the commissioning of industrial presses

    Get PDF
    182 p.This thesis presents solutions to the control problems that exist nowadays in industrial presses, followed by a discussion of the most appropriate control schemes that may be used for their solution. Iterative Learning Control is subsequently analyzed, as the most promising control scheme for machine presses, due to its capability to improve the performance of a system that operates repeatedly.A novel Iterative Learning Control design is presented, which makes use of the dynamic characteristics of the system to improve the current controller performance and stability. This, results in an adaptation of the presented Iterative Learning Control design to two use cases: the single-input-single-output force control of mechanical presses and the multiple-input-multiple-output position control of hydraulic presses. While existing Iterative Learning Control approaches are also described and applied to the previously mentioned use cases, the presented novel approach has been shown to outperform the existing algorithms in terms of control performance.The proposed Iterative Learning control algorithms are validated in an experimental hydraulic test rig, in which the performance, robustness and stability of the algorithm have been demonstrated
    • …
    corecore