7,173 research outputs found

    On Small Satellites for Oceanography: A Survey

    Get PDF
    The recent explosive growth of small satellite operations driven primarily from an academic or pedagogical need, has demonstrated the viability of commercial-off-the-shelf technologies in space. They have also leveraged and shown the need for development of compatible sensors primarily aimed for Earth observation tasks including monitoring terrestrial domains, communications and engineering tests. However, one domain that these platforms have not yet made substantial inroads into, is in the ocean sciences. Remote sensing has long been within the repertoire of tools for oceanographers to study dynamic large scale physical phenomena, such as gyres and fronts, bio-geochemical process transport, primary productivity and process studies in the coastal ocean. We argue that the time has come for micro and nano satellites (with mass smaller than 100 kg and 2 to 3 year development times) designed, built, tested and flown by academic departments, for coordinated observations with robotic assets in situ. We do so primarily by surveying SmallSat missions oriented towards ocean observations in the recent past, and in doing so, we update the current knowledge about what is feasible in the rapidly evolving field of platforms and sensors for this domain. We conclude by proposing a set of candidate ocean observing missions with an emphasis on radar-based observations, with a focus on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table

    Space shuttle search and rescue experiment using synthetic aperture radar

    Get PDF
    The feasibility of a synthetic aperture radar for search and rescue applications was demonstrated with aircraft experiments. One experiment was conducted using the ERIM four-channel radar and several test sites in the Michigan area. In this test simple corner-reflector targets were successfully imaged. Results from this investigation were positive and indicate that the concept can be used to investigate new approaches focused on the development of a global search and rescue system. An orbital experiment to demonstrate the application of synthetic aperture radar to search and rescue is proposed using the space shuttle

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    The Case for Combining a Large Low-Band Very High Frequency Transmitter With Multiple Receiving Arrays for Geospace Research: A Geospace Radar

    Get PDF
    We argue that combining a high‐power, large‐aperture radar transmitter with several large‐aperture receiving arrays to make a geospace radar—a radar capable of probing near‐Earth space from the upper troposphere through to the solar corona—would transform geospace research. We review the emergence of incoherent scatter radar in the 1960s as an agent that unified early, pioneering research in geospace in a common theoretical, experimental, and instrumental framework, and we suggest that a geospace radar would have a similar effect on future developments in space weather research. We then discuss recent developments in radio‐array technology that could be exploited in the development of a geospace radar with new or substantially improved capabilities compared to the radars in use presently. A number of applications for a geospace radar with the new and improved capabilities are reviewed including studies of meteor echoes, mesospheric and stratospheric turbulence, ionospheric flows, plasmaspheric and ionospheric irregularities, and reflection from the solar corona and coronal mass ejections. We conclude with a summary of technical requirements

    Forward scatter radar for air surveillance: Characterizing the target-receiver transition from far-field to near-field regions

    Get PDF
    A generalized electromagnetic model is presented in order to predict the response of forward scatter radar (FSR) systems for air-target surveillance applications in both far-field and near-field conditions. The relevant scattering problem is tackled by developing the Helmholtz-Kirchhoff formula and Babinet's principle to express the scattered and the total fields in typical FSR configurations. To fix the distinctive features of this class of problems, our approach is applied here to metallic targets with canonical rectangular shapes illuminated by a plane wave, but the model can straightforwardly be used to account for more general scenarios. By exploiting suitable approximations, a simple analytical formulation is derived allowing us to efficiently describe the characteristics of the FSR response for a target transitioning with respect to the receiver from far-field to near-field regions. The effects of different target electrical sizes and detection distances on the received signal, as well as the impact of the trajectory of the moving object, are evaluated and discussed. All of the results are shown in terms of quantities normalized to the wavelength and can be generalized to different configurations once the carrier frequency of the FSR system is set. The range of validity of the proposed closed-form approach has been checked by means of numerical analyses, involving comparisons also with a customized implementation of a full-wave commercial CAD tool. The outcomes of this study can pave the way for significant extensions on the applicability of the FSR technique

    Sensors and methods for weather-independent remote sensing with microwaves

    Get PDF
    Sensors and methods of radar and microwave radiometry which operate in the millimeter wave range are discussed. The properties of electromagnetic waves are discussed as well as the resolution capacity and measurement accuracy of sensor systems

    Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping

    Get PDF
    Acknowledgments We thank Johan Havelaar, Aeryon Labs Inc., AeronVironment Inc. and Aeronautics Inc. for kindly permitting the use of materials in Fig. 1.Peer reviewedPublisher PD
    corecore