54 research outputs found

    Peeling and Nibbling the Cactus: Subexponential-Time Algorithms for Counting Triangulations and Related Problems

    Get PDF
    Given a set of n points S in the plane, a triangulation T of S is a maximal set of non-crossing segments with endpoints in S. We present an algorithm that computes the number of triangulations on a given set of n points in time n^{ (11+ o(1)) sqrt{n} }, significantly improving the previous best running time of O(2^n n^2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of size O(sqrt{n}) of a triangulation in a canonical way. The definition of the separators are based on the decomposition of the triangulation into nested layers ("cactus graphs"). Based on the above algorithm, we develop a simple and formal framework to count other non-crossing straight-line graphs in n^{O(sqrt{n})} time. We demonstrate the usefulness of the framework by applying it to counting non-crossing Hamilton cycles, spanning trees, perfect matchings, 3-colorable triangulations, connected graphs, cycle decompositions, quadrangulations, 3-regular graphs, and more

    Peeling and nibbling the cactus: Subexponential-time algorithms for counting triangulations and related problems

    Get PDF
    Given a set of nn points SS in the plane, a triangulation TT of SS is a maximal set of non-crossing segments with endpoints in SS. We present an algorithm that computes the number of triangulations on a given set of nn points in time n(11+o(1))nn^{(11+ o(1))\sqrt{n} }, significantly improving the previous best running time of O(2nn2)O(2^n n^2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of size O(n)O(\sqrt{n}) of a triangulation in a canonical way. The definition of the separators are based on the decomposition of the triangulation into nested layers ("cactus graphs"). Based on the above algorithm, we develop a simple and formal framework to count other non-crossing straight-line graphs in nO(n)n^{O(\sqrt{n})} time. We demonstrate the usefulness of the framework by applying it to counting non-crossing Hamilton cycles, spanning trees, perfect matchings, 33-colorable triangulations, connected graphs, cycle decompositions, quadrangulations, 33-regular graphs, and more.Comment: 47 pages, 23 Figures, to appear in SoCG 201

    Degree Constrained Triangulation of Annular Regions and Point Sites

    Full text link
    Generating constrained triangulations of point sites distributed in the plane is a significant problem in computational geometry. We present theoretical and experimental investigation results for generating triangulations for polygons and point sites that address node degree constraints. We characterize point sites that have almost all vertices of odd degree. We present experimental results on the node degree distribution of Delaunay triangulations of point sites generated randomly. Additionally, we present a heuristic algorithm for triangulating a given normal annular region with an increment of even degree nodes

    The Tensor Track, III

    Full text link
    We provide an informal up-to-date review of the tensor track approach to quantum gravity. In a long introduction we describe in simple terms the motivations for this approach. Then the many recent advances are summarized, with emphasis on some points (Gromov-Hausdorff limit, Loop vertex expansion, Osterwalder-Schrader positivity...) which, while important for the tensor track program, are not detailed in the usual quantum gravity literature. We list open questions in the conclusion and provide a rather extended bibliography.Comment: 53 pages, 6 figure
    • …
    corecore