8,274 research outputs found

    The Erdős-Ko-Rado properties of various graphs containing singletons

    Get PDF
    Let G=(V,E) be a graph. For r≥1, let be the family of independent vertex r-sets of G. For vV(G), let denote the star . G is said to be r-EKR if there exists vV(G) such that for any non-star family of pair-wise intersecting sets in . If the inequality is strict, then G is strictly r-EKR. Let Γ be the family of graphs that are disjoint unions of complete graphs, paths, cycles, including at least one singleton. Holroyd, Spencer and Talbot proved that, if GΓ and 2r is no larger than the number of connected components of G, then G is r-EKR. However, Holroyd and Talbot conjectured that, if G is any graph and 2r is no larger than μ(G), the size of a smallest maximal independent vertex set of G, then G is r-EKR, and strictly so if 2r<μ(G). We show that in fact, if GΓ and 2r is no larger than the independence number of G, then G is r-EKR; we do this by proving the result for all graphs that are in a suitable larger set Γ′Γ. We also confirm the conjecture for graphs in an even larger set Γ″Γ′

    A Coupled AKNS-Kaup-Newell Soliton Hierarchy

    Full text link
    A coupled AKNS-Kaup-Newell hierarchy of systems of soliton equations is proposed in terms of hereditary symmetry operators resulted from Hamiltonian pairs. Zero curvature representations and tri-Hamiltonian structures are established for all coupled AKNS-Kaup-Newell systems in the hierarchy. Therefore all systems have infinitely many commuting symmetries and conservation laws. Two reductions of the systems lead to the AKNS hierarchy and the Kaup-Newell hierarchy, and thus those two soliton hierarchies also possess tri-Hamiltonian structures.Comment: 15 pages, late

    On dynamic monopolies of graphs with general thresholds

    Get PDF
    Let GG be a graph and τ:V(G)→N{\mathcal{\tau}}: V(G)\rightarrow \Bbb{N} be an assignment of thresholds to the vertices of GG. A subset of vertices DD is said to be dynamic monopoly (or simply dynamo) if the vertices of GG can be partitioned into subsets D0,D1,...,DkD_0, D_1,..., D_k such that D0=DD_0=D and for any i=1,...,k−1i=1,..., k-1 each vertex vv in Di+1D_{i+1} has at least t(v)t(v) neighbors in D0∪...∪DiD_0\cup ...\cup D_i. Dynamic monopolies are in fact modeling the irreversible spread of influence such as disease or belief in social networks. We denote the smallest size of any dynamic monopoly of GG, with a given threshold assignment, by dyn(G)dyn(G). In this paper we first define the concept of a resistant subgraph and show its relationship with dynamic monopolies. Then we obtain some lower and upper bounds for the smallest size of dynamic monopolies in graphs with different types of thresholds. Next we introduce dynamo-unbounded families of graphs and prove some related results. We also define the concept of a homogenious society that is a graph with probabilistic thresholds satisfying some conditions and obtain a bound for the smallest size of its dynamos. Finally we consider dynamic monopoly of line graphs and obtain some bounds for their sizes and determine the exact values in some special cases

    Matchings and Hamilton Cycles with Constraints on Sets of Edges

    Full text link
    The aim of this paper is to extend and generalise some work of Katona on the existence of perfect matchings or Hamilton cycles in graphs subject to certain constraints. The most general form of these constraints is that we are given a family of sets of edges of our graph and are not allowed to use all the edges of any member of this family. We consider two natural ways of expressing constraints of this kind using graphs and using set systems. For the first version we ask for conditions on regular bipartite graphs GG and HH for there to exist a perfect matching in GG, no two edges of which form a 44-cycle with two edges of HH. In the second, we ask for conditions under which a Hamilton cycle in the complete graph (or equivalently a cyclic permutation) exists, with the property that it has no collection of intervals of prescribed lengths whose union is an element of a given family of sets. For instance we prove that the smallest family of 44-sets with the property that every cyclic permutation of an nn-set contains two adjacent pairs of points has size between (1/9+o(1))n2(1/9+o(1))n^2 and (1/2−o(1))n2(1/2-o(1))n^2. We also give bounds on the general version of this problem and on other natural special cases. We finish by raising numerous open problems and directions for further study.Comment: 21 page
    • …
    corecore