2,512,429 research outputs found

    Million Atom Electronic Structure and Device Calculations on Peta-Scale Computers

    Full text link
    Semiconductor devices are scaled down to the level which constituent materials are no longer considered continuous. To account for atomistic randomness, surface effects and quantum mechanical effects, an atomistic modeling approach needs to be pursued. The Nanoelectronic Modeling Tool (NEMO 3-D) has satisfied the requirement by including emprical sp3ssp^{3}s^{*} and sp3d5ssp^{3}d^{5}s^{*} tight binding models and considering strain to successfully simulate various semiconductor material systems. Computationally, however, NEMO 3-D needs significant improvements to utilize increasing supply of processors. This paper introduces the new modeling tool, OMEN 3-D, and discusses the major computational improvements, the 3-D domain decomposition and the multi-level parallelism. As a featured application, a full 3-D parallelized Schr\"odinger-Poisson solver and its application to calculate the bandstructure of δ\delta doped phosphorus(P) layer in silicon is demonstrated. Impurity bands due to the donor ion potentials are computed.Comment: 4 pages, 6 figures, IEEE proceedings of the 13th International Workshop on Computational Electronics, Tsinghua University, Beijing, May 27-29 200

    3-D numerical modeling of methane hydrate deposits

    Get PDF
    Within the German gas hydrate initiative SUGAR, we have developed a new tool for predicting the formation of sub-seafloor gas hydrate deposits. For this purpose, a new 2D/3D module simulating the biogenic generation of methane from organic material and the formation of gas hydrates has been added to the petroleum systems modeling software package PetroMod®. T ypically, PetroMod® simulates the thermogenic generation of multiple hydrocarbon components including oil and gas, their migration through geological strata, and finally predicts the oil and gas accumulation in suitable reservoir formations. We have extended PetroMod® to simulate gas hydrate accumulations in marine and permafrost environments by the implementation of algorithms describing (1) the physical, thermodynamic, and kinetic properties of gas hydrates; and (2) a kinetic continuum model for the microbially mediated, low temperature degradation of particulate organic carbon in sediments. Additionally, the temporal and spatial resolutions of PetroMod® were increased in order to simulate processes on time scales of hundreds of years and within decimeters of spatial extension. As a first test case for validating and improving the abilities of the new hydrate module, the petroleum systems model of the Alaska North Slope developed by IES (currently Shlumberger) and the USGS has been chosen. In this area, gas hydrates have been drilled in several wells, and a field test for hydrate production is planned for 2011/2012. The results of the simulation runs in PetroMod® predicting the thickness of the gas hydrate stability field, the generation and migration of biogenic and thermogenic methane gas, and its accumulation as gas hydrates will be shown during the conference. The predicted distribution of gas hydrates will be discussed in comparison to recent gas hydrate findings in the Alaska North Slope region

    Numerical simulation of ice growth on a MS-317 swept wing geometry

    Get PDF
    An effort to develop a 3-D ice accretion modeling method was initiated. This first step towards creation of a complete aircraft icing simulation code builds on previously developed methods for calculating 3-D flow fields and particle trajectories combined with a 2-D ice accretion calculation along coordinate locations corresponding to streamlines. The types of calculations necessary to predict 3-D ice accretion is demonstrated. Results of calculations using 3-D method for a MS-317 swept wing geometry are projected onto a 2-D plane parallel to the free stream direction and compared to experimental results for the same geometry. It is anticipated that many modifications will be made to this approach, however this effort will lay the groundwork for future modeling efforts. Results indicate that rime ice shapes indicate a difficulty in accurately calculating the ice shape in the runback region

    The GPRIME approach to finite element modeling

    Get PDF
    GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data

    Describing Videos by Exploiting Temporal Structure

    Full text link
    Recent progress in using recurrent neural networks (RNNs) for image description has motivated the exploration of their application for video description. However, while images are static, working with videos requires modeling their dynamic temporal structure and then properly integrating that information into a natural language description. In this context, we propose an approach that successfully takes into account both the local and global temporal structure of videos to produce descriptions. First, our approach incorporates a spatial temporal 3-D convolutional neural network (3-D CNN) representation of the short temporal dynamics. The 3-D CNN representation is trained on video action recognition tasks, so as to produce a representation that is tuned to human motion and behavior. Second we propose a temporal attention mechanism that allows to go beyond local temporal modeling and learns to automatically select the most relevant temporal segments given the text-generating RNN. Our approach exceeds the current state-of-art for both BLEU and METEOR metrics on the Youtube2Text dataset. We also present results on a new, larger and more challenging dataset of paired video and natural language descriptions.Comment: Accepted to ICCV15. This version comes with code release and supplementary materia

    Finding antipodal point grasps on irregularly shaped objects

    Get PDF
    Two-finger antipodal point grasping of arbitrarily shaped smooth 2-D and 3-D objects is considered. An object function is introduced that maps a finger contact space to the object surface. Conditions are developed to identify the feasible grasping region, F, in the finger contact space. A “grasping energy function”, E , is introduced which is proportional to the distance between two grasping points. The antipodal points correspond to critical points of E in F. Optimization and/or continuation techniques are used to find these critical points. In particular, global optimization techniques are applied to find the “maximal” or “minimal” grasp. Further, modeling techniques are introduced for representing 2-D and 3-D objects using B-spline curves and spherical product surfaces