32 research outputs found

    A Physically-Consistent Bayesian Non-Parametric Mixture Model for Dynamical System Learning

    No full text
    Figueroa N, Billard A. A Physically-Consistent Bayesian Non-Parametric Mixture Model for Dynamical System Learning. In: Billard A, Dragan A, Peters J, Morimoto J, eds. 2nd Annual Conference on Robot Learning, CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings. Proceedings of Machine Learning Research. Vol 87. 2018: 927-946

    Simulation-based reinforcement learning for real-world autonomous driving

    Full text link
    We use reinforcement learning in simulation to obtain a driving system controlling a full-size real-world vehicle. The driving policy takes RGB images from a single camera and their semantic segmentation as input. We use mostly synthetic data, with labelled real-world data appearing only in the training of the segmentation network. Using reinforcement learning in simulation and synthetic data is motivated by lowering costs and engineering effort. In real-world experiments we confirm that we achieved successful sim-to-real policy transfer. Based on the extensive evaluation, we analyze how design decisions about perception, control, and training impact the real-world performance

    RSG: Fast Learning Adaptive Skills for Quadruped Robots by Skill Graph

    Full text link
    Developing robotic intelligent systems that can adapt quickly to unseen wild situations is one of the critical challenges in pursuing autonomous robotics. Although some impressive progress has been made in walking stability and skill learning in the field of legged robots, their ability to fast adaptation is still inferior to that of animals in nature. Animals are born with massive skills needed to survive, and can quickly acquire new ones, by composing fundamental skills with limited experience. Inspired by this, we propose a novel framework, named Robot Skill Graph (RSG) for organizing massive fundamental skills of robots and dexterously reusing them for fast adaptation. Bearing a structure similar to the Knowledge Graph (KG), RSG is composed of massive dynamic behavioral skills instead of static knowledge in KG and enables discovering implicit relations that exist in be-tween of learning context and acquired skills of robots, serving as a starting point for understanding subtle patterns existing in robots' skill learning. Extensive experimental results demonstrate that RSG can provide rational skill inference upon new tasks and environments and enable quadruped robots to adapt to new scenarios and learn new skills rapidly

    ES-ENAS: Blackbox Optimization over Hybrid Spaces via Combinatorial and Continuous Evolution

    Full text link
    We consider the problem of efficient blackbox optimization over a large hybrid search space, consisting of a mixture of a high dimensional continuous space and a complex combinatorial space. Such examples arise commonly in evolutionary computation, but also more recently, neuroevolution and architecture search for Reinforcement Learning (RL) policies. Unfortunately however, previous mutation-based approaches suffer in high dimensional continuous spaces both theoretically and practically. We thus instead propose ES-ENAS, a simple joint optimization procedure by combining Evolutionary Strategies (ES) and combinatorial optimization techniques in a highly scalable and intuitive way, inspired by the one-shot or supernet paradigm introduced in Efficient Neural Architecture Search (ENAS). Through this relatively simple marriage between two different lines of research, we are able to gain the best of both worlds, and empirically demonstrate our approach by optimizing BBOB functions over hybrid spaces as well as combinatorial neural network architectures via edge pruning and quantization on popular RL benchmarks. Due to the modularity of the algorithm, we also are able incorporate a wide variety of popular techniques ranging from use of different continuous and combinatorial optimizers, as well as constrained optimization.Comment: 22 pages. See https://github.com/google-research/google-research/tree/master/es_enas for associated cod

    Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers

    Full text link
    We propose to address quadrupedal locomotion tasks using Reinforcement Learning (RL) with a Transformer-based model that learns to combine proprioceptive information and high-dimensional depth sensor inputs. While learning-based locomotion has made great advances using RL, most methods still rely on domain randomization for training blind agents that generalize to challenging terrains. Our key insight is that proprioceptive states only offer contact measurements for immediate reaction, whereas an agent equipped with visual sensory observations can learn to proactively maneuver environments with obstacles and uneven terrain by anticipating changes in the environment many steps ahead. In this paper, we introduce LocoTransformer, an end-to-end RL method for quadrupedal locomotion that leverages a Transformer-based model for fusing proprioceptive states and visual observations. We evaluate our method in challenging simulated environments with different obstacles and uneven terrain. We show that our method obtains significant improvements over policies with only proprioceptive state inputs, and that Transformer-based models further improve generalization across environments. Our project page with videos is at https://RchalYang.github.io/LocoTransformer .Comment: Our project page with videos is at https://RchalYang.github.io/LocoTransforme

    Max-Min Off-Policy Actor-Critic Method Focusing on Worst-Case Robustness to Model Misspecification

    Full text link
    In the field of reinforcement learning, because of the high cost and risk of policy training in the real world, policies are trained in a simulation environment and transferred to the corresponding real-world environment. However, the simulation environment does not perfectly mimic the real-world environment, lead to model misspecification. Multiple studies report significant deterioration of policy performance in a real-world environment. In this study, we focus on scenarios involving a simulation environment with uncertainty parameters and the set of their possible values, called the uncertainty parameter set. The aim is to optimize the worst-case performance on the uncertainty parameter set to guarantee the performance in the corresponding real-world environment. To obtain a policy for the optimization, we propose an off-policy actor-critic approach called the Max-Min Twin Delayed Deep Deterministic Policy Gradient algorithm (M2TD3), which solves a max-min optimization problem using a simultaneous gradient ascent descent approach. Experiments in multi-joint dynamics with contact (MuJoCo) environments show that the proposed method exhibited a worst-case performance superior to several baseline approaches.Comment: Neural Information Processing Systems 2022 (NeurIPS '22

    BC-IRL: Learning Generalizable Reward Functions from Demonstrations

    Full text link
    How well do reward functions learned with inverse reinforcement learning (IRL) generalize? We illustrate that state-of-the-art IRL algorithms, which maximize a maximum-entropy objective, learn rewards that overfit to the demonstrations. Such rewards struggle to provide meaningful rewards for states not covered by the demonstrations, a major detriment when using the reward to learn policies in new situations. We introduce BC-IRL a new inverse reinforcement learning method that learns reward functions that generalize better when compared to maximum-entropy IRL approaches. In contrast to the MaxEnt framework, which learns to maximize rewards around demonstrations, BC-IRL updates reward parameters such that the policy trained with the new reward matches the expert demonstrations better. We show that BC-IRL learns rewards that generalize better on an illustrative simple task and two continuous robotic control tasks, achieving over twice the success rate of baselines in challenging generalization settings

    Learning Control Policies for Stochastic Systems with Reach-avoid Guarantees

    Full text link
    We study the problem of learning controllers for discrete-time non-linear stochastic dynamical systems with formal reach-avoid guarantees. This work presents the first method for providing formal reach-avoid guarantees, which combine and generalize stability and safety guarantees, with a tolerable probability threshold p[0,1]p\in[0,1] over the infinite time horizon. Our method leverages advances in machine learning literature and it represents formal certificates as neural networks. In particular, we learn a certificate in the form of a reach-avoid supermartingale (RASM), a novel notion that we introduce in this work. Our RASMs provide reachability and avoidance guarantees by imposing constraints on what can be viewed as a stochastic extension of level sets of Lyapunov functions for deterministic systems. Our approach solves several important problems -- it can be used to learn a control policy from scratch, to verify a reach-avoid specification for a fixed control policy, or to fine-tune a pre-trained policy if it does not satisfy the reach-avoid specification. We validate our approach on 33 stochastic non-linear reinforcement learning tasks.Comment: Accepted at AAAI 202
    corecore