732 research outputs found

    Fluid Morphing for 2D Animations

    Get PDF
    Professionaalsel tasemel animeerimine on aeganõudev ja kulukas tegevus. Seda eriti sõltumatule arvutimängude tegijale. Siit tulenevalt osutub kasulikuks leida meetodeid, mis võimaldaks programmaatiliselt suurendada kaadrite arvu igas kahemõõtmelises raster animatsioonis. Vedeliku simulaatoriga eksperimenteerimine andis käesoleva töö autoritele idee, kuidas saavutada visuaalselt meeldiv kaadrite üleminek, kasutades selleks vedeliku dünaamikat. Tulemusena valmis programm, mis võib animaatori efektiivsust tõsta lausa mitmeid kordi. Autorid usuvad, et see avastus võib viia kahemõõtmeliste animatsioonide uuele võidukäigule — näiteks kaasaegsete arvutimängude kontekstis.Creation of professional animations is expensive and time-consuming, especially for the independent game developers. Therefore, it is rewarding to find a method that would programmatically increase the frame rate of any two-dimensional raster animation. Experimenting with a fluid simulator gave the authors an insight that to achieve visually pleasant and smooth animations, elements from fluid dynamics can be used. As a result, fluid image morphing was developed, allowing the animators to produce more significant frames than they would with the classic methods. The authors believe that this discovery could reintroduce hand drawn animations to modern computer games

    Morphing of Building Footprints Using a Turning Angle Function

    Get PDF
    We study the problem of morphing two polygons of building footprints at two different scales. This problem frequently occurs during the continuous zooming of interactive maps. The ground plan of a building footprint on a map has orthogonal characteristics, but traditional morphing methods cannot preserve these geographic characteristics at intermediate scales. We attempt to address this issue by presenting a turning angle function-based morphing model (TAFBM) that can generate polygons at an intermediate scale with an identical turning angle for each side. Thus, the orthogonal characteristics can be preserved during the entire interpolation. A case study demonstrates that the model yields good results when applied to data from a building map at various scales. During the continuous generalization, the orthogonal characteristics and their relationships with the spatial direction and topology are well preserve

    2D and 3D surface image processing algorithms and their applications

    Get PDF
    This doctoral dissertation work aims to develop algorithms for 2D image segmentation application of solar filament disappearance detection, 3D mesh simplification, and 3D image warping in pre-surgery simulation. Filament area detection in solar images is an image segmentation problem. A thresholding and region growing combined method is proposed and applied in this application. Based on the filament area detection results, filament disappearances are reported in real time. The solar images in 1999 are processed with this proposed system and three statistical results of filaments are presented. 3D images can be obtained by passive and active range sensing. An image registration process finds the transformation between each pair of range views. To model an object, a common reference frame in which all views can be transformed must be defined. After the registration, the range views should be integrated into a non-redundant model. Optimization is necessary to obtain a complete 3D model. One single surface representation can better fit to the data. It may be further simplified for rendering, storing and transmitting efficiently, or the representation can be converted to some other formats. This work proposes an efficient algorithm for solving the mesh simplification problem, approximating an arbitrary mesh by a simplified mesh. The algorithm uses Root Mean Square distance error metric to decide the facet curvature. Two vertices of one edge and the surrounding vertices decide the average plane. The simplification results are excellent and the computation speed is fast. The algorithm is compared with six other major simplification algorithms. Image morphing is used for all methods that gradually and continuously deform a source image into a target image, while producing the in-between models. Image warping is a continuous deformation of a: graphical object. A morphing process is usually composed of warping and interpolation. This work develops a direct-manipulation-of-free-form-deformation-based method and application for pre-surgical planning. The developed user interface provides a friendly interactive tool in the plastic surgery. Nose augmentation surgery is presented as an example. Displacement vector and lattices resulting in different resolution are used to obtain various deformation results. During the deformation, the volume change of the model is also considered based on a simplified skin-muscle model

    Large-scale Geometric Data Decomposition, Processing and Structured Mesh Generation

    Get PDF
    Mesh generation is a fundamental and critical problem in geometric data modeling and processing. In most scientific and engineering tasks that involve numerical computations and simulations on 2D/3D regions or on curved geometric objects, discretizing or approximating the geometric data using a polygonal or polyhedral meshes is always the first step of the procedure. The quality of this tessellation often dictates the subsequent computation accuracy, efficiency, and numerical stability. When compared with unstructured meshes, the structured meshes are favored in many scientific/engineering tasks due to their good properties. However, generating high-quality structured mesh remains challenging, especially for complex or large-scale geometric data. In industrial Computer-aided Design/Engineering (CAD/CAE) pipelines, the geometry processing to create a desirable structural mesh of the complex model is the most costly step. This step is semi-manual, and often takes up to several weeks to finish. Several technical challenges remains unsolved in existing structured mesh generation techniques. This dissertation studies the effective generation of structural mesh on large and complex geometric data. We study a general geometric computation paradigm to solve this problem via model partitioning and divide-and-conquer. To apply effective divide-and-conquer, we study two key technical components: the shape decomposition in the divide stage, and the structured meshing in the conquer stage. We test our algorithm on vairous data set, the results demonstrate the efficiency and effectiveness of our framework. The comparisons also show our algorithm outperforms existing partitioning methods in final meshing quality. We also show our pipeline scales up efficiently on HPC environment

    A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases

    Full text link
    Finite Element mesh generation remains an important issue for patient specific biomechanical modeling. While some techniques make automatic mesh generation possible, in most cases, manual mesh generation is preferred for better control over the sub-domain representation, element type, layout and refinement that it provides. Yet, this option is time consuming and not suited for intraoperative situations where model generation and computation time is critical. To overcome this problem we propose a fast and automatic mesh generation technique based on the elastic registration of a generic mesh to the specific target organ in conjunction with element regularity and quality correction. This Mesh-Match-and-Repair (MMRep) approach combines control over the mesh structure along with fast and robust meshing capabilities, even in situations where only partial organ geometry is available. The technique was successfully tested on a database of 5 pre-operatively acquired complete femora CT scans, 5 femoral heads partially digitized at intraoperative stage, and 50 CT volumes of patients' heads. The MMRep algorithm succeeded in all 60 cases, yielding for each patient a hex-dominant, Atlas based, Finite Element mesh with submillimetric surface representation accuracy, directly exploitable within a commercial FE software

    Structural Surface Mapping for Shape Analysis

    Get PDF
    Natural surfaces are usually associated with feature graphs, such as the cortical surface with anatomical atlas structure. Such a feature graph subdivides the whole surface into meaningful sub-regions. Existing brain mapping and registration methods did not integrate anatomical atlas structures. As a result, with existing brain mappings, it is difficult to visualize and compare the atlas structures. And also existing brain registration methods can not guarantee the best possible alignment of the cortical regions which can help computing more accurate shape similarity metrics for neurodegenerative disease analysis, e.g., Alzheimer’s disease (AD) classification. Also, not much attention has been paid to tackle surface parameterization and registration with graph constraints in a rigorous way which have many applications in graphics, e.g., surface and image morphing. This dissertation explores structural mappings for shape analysis of surfaces using the feature graphs as constraints. (1) First, we propose structural brain mapping which maps the brain cortical surface onto a planar convex domain using Tutte embedding of a novel atlas graph and harmonic map with atlas graph constraints to facilitate visualization and comparison between the atlas structures. (2) Next, we propose a novel brain registration technique based on an intrinsic atlas-constrained harmonic map which provides the best possible alignment of the cortical regions. (3) After that, the proposed brain registration technique has been applied to compute shape similarity metrics for AD classification. (4) Finally, we propose techniques to compute intrinsic graph-constrained parameterization and registration for general genus-0 surfaces which have been used in surface and image morphing applications

    Optimum Slice Reduction Algorithm For Fast Surface Reconstruction From Contour Slices

    Get PDF
    Tesis ini memfokus kepada pembinaan semula permukaan daripada siri hirisan kontur, dengan tujuan mempercepatkan proses pembinaan semula di samping mengekalkan kualiti output pada tahap yang boleh diterima. This thesis is concerned with the reconstruction of surface from a series of contour slices, with the aim to speed up the reconstruction process while preserving the output quality at an acceptable level
    corecore