2,841 research outputs found

    Work design improvement at Miroad Rubber Industries Sdn. Bhd.

    Get PDF
    Erul Food Industries known as Salaiport Industry is a family-owned company and was established on July 2017. Salaiport Industry apparently moved to a new place at Pedas, Negeri Sembilan. Previously, Salaiport Industry operated in-house located at Pagoh, Johor. This small company major business is producing frozen smoked beef, smoked quail, smoke catfish and smoked duck. The main frozen product is smoked beef. The frozen smoked meat produced by Salaiport Industry is depending on customer demands. Usually the company produce 40 kg to 60 kg a day and operated between for four days until five days. Therefore, the company produce approximately around 80 kg to 120 kg per week. The company usually take 2 days for 1 complete cycle for the production as the first day the company will only receive the meat from the supplier and freeze the meat for use of tomorrow

    Child labour: the case study in Bangladesh

    Get PDF
    Child labour involves of person that age below than 17 years old. Child labour often happen in poor countries such as Bangladesh. In Bangladesh, the issue of child labour might be the biggest issue. Bangladesh come up with Bangladesh Labour Act (BLA) that did not allow any person age below from fourteen years old to work (Nawshin et al, 2019). One of the aim or purpose of this act is to prevent teen workers in order to get the proper payment of any work. This is because when organization use child labour, they might be paid at lower rate because children usually do not have much responsible in their family compared to teen workers. This indirectly cause an economic matter in a family

    Compression of spectral meteorological imagery

    Get PDF
    Data compression is essential to current low-earth-orbit spectral sensors with global coverage, e.g., meteorological sensors. Such sensors routinely produce in excess of 30 Gb of data per orbit (over 4 Mb/s for about 110 min) while typically limited to less than 10 Gb of downlink capacity per orbit (15 minutes at 10 Mb/s). Astro-Space Division develops spaceborne compression systems for compression ratios from as little as three to as much as twenty-to-one for high-fidelity reconstructions. Current hardware production and development at Astro-Space Division focuses on discrete cosine transform (DCT) systems implemented with the GE PFFT chip, a 32x32 2D-DCT engine. Spectral relations in the data are exploited through block mean extraction followed by orthonormal transformation. The transformation produces blocks with spatial correlation that are suitable for further compression with any block-oriented spatial compression system, e.g., Astro-Space Division's Laplacian modeler and analytic encoder of DCT coefficients

    Development of control algorithm for a new 12s-6p single phase field excited flux switching motor

    Get PDF
    Flux switching motor (FSM) fall into a special category of switch reluctance motors (SRM). One of the key features of FSM is its rotor structure. Generally, it is free from any magnet and winding. Thus, allowing the motor to attain considerably higher speed and more stability then conventional AC motor. However, this simple and robust structure demands more sophisticated driving mechanism mainly due to the absence of rotating magneto motive force (MMF) in the rotor. The main concern of this research is to design algorithms for starting and driving 12 slots and 6 poles (12S-6P) segmental rotor field excited flux switching motor (FEFSM) and evaluate the algorithms efficiency by analyzing motor’s dynamic performance in terms of torque and current consumption. In this research, two algorithms have been proposed in which first algorithm is based on bipolar DC signals while second algorithm is based on field oriented control (FOC) principle. For position detection, algorithms merely need a basic infrared transceiver sensor. Bipolar DC signal algorithm is based on changing the polarity of armature DC voltage on the detection of zero rotor position. On the other hand, FOC algorithm involves detection of rotor zero position to estimate speed and prediction of instantaneous rotor position in real time. Initially, fundamental control principle for 12S-6P FEFSM has been identified through the finite element analysis (FEA) of the model. Afterwards control algorithms have been successfully developed and implemented in the motor control hardware. Compared to Bi-polar DC algorithm, the observations shows that the single phase FOC algorithm results in far less distortion of armature voltage waveforms even at high speed, which results in jittering free motor operation. On the other hand, Bi-polar DC algorithm results in much higher torque production, which is about 50% more than that of the single phase FOC’s yield. In terms of simulation and prototype performance comparison, Bi-polar DC algorithm is about 92% efficient in torque generation in case of initial model of FEFSM and staggering efficiency around 96% in case of optimized motor model

    Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization

    Full text link
    A versatile method is described for the practical computation of the discrete Fourier transforms (DFT) of a continuous function g(t)g(t) given by its values gjg_{j} at the points of a uniform grid FNF_{N} generated by conjugacy classes of elements of finite adjoint order NN in the fundamental region FF of compact semisimple Lie groups. The present implementation of the method is for the groups SU(2), when FF is reduced to a one-dimensional segment, and for SU(2)×...×SU(2)SU(2)\times ... \times SU(2) in multidimensional cases. This simplest case turns out to result in a transform known as discrete cosine transform (DCT), which is often considered to be simply a specific type of the standard DFT. Here we show that the DCT is very different from the standard DFT when the properties of the continuous extensions of these two discrete transforms from the discrete grid points tj;j=0,1,...Nt_j; j=0,1, ... N to all points t∈Ft \in F are considered. (A) Unlike the continuous extension of the DFT, the continuous extension of (the inverse) DCT, called CEDCT, closely approximates g(t)g(t) between the grid points tjt_j. (B) For increasing NN, the derivative of CEDCT converges to the derivative of g(t)g(t). And (C), for CEDCT the principle of locality is valid. Finally, we use the continuous extension of 2-dimensional DCT to illustrate its potential for interpolation, as well as for the data compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's Repor
    • …
    corecore