12 research outputs found

    Stroke-based sketched symbol reconstruction and segmentation

    Full text link
    Hand-drawn objects usually consist of multiple semantically meaningful parts. For example, a stick figure consists of a head, a torso, and pairs of legs and arms. Efficient and accurate identification of these subparts promises to significantly improve algorithms for stylization, deformation, morphing and animation of 2D drawings. In this paper, we propose a neural network model that segments symbols into stroke-level components. Our segmentation framework has two main elements: a fixed feature extractor and a Multilayer Perceptron (MLP) network that identifies a component based on the feature. As the feature extractor we utilize an encoder of a stroke-rnn, which is our newly proposed generative Variational Auto-Encoder (VAE) model that reconstructs symbols on a stroke by stroke basis. Experiments show that a single encoder could be reused for segmenting multiple categories of sketched symbols with negligible effects on segmentation accuracies. Our segmentation scores surpass existing methodologies on an available small state of the art dataset. Moreover, extensive evaluations on our newly annotated big dataset demonstrate that our framework obtains significantly better accuracies as compared to baseline models. We release the dataset to the community

    Intelligent visual media processing: when graphics meets vision

    Get PDF
    The computer graphics and computer vision communities have been working closely together in recent years, and a variety of algorithms and applications have been developed to analyze and manipulate the visual media around us. There are three major driving forces behind this phenomenon: i) the availability of big data from the Internet has created a demand for dealing with the ever increasing, vast amount of resources; ii) powerful processing tools, such as deep neural networks, provide e�ective ways for learning how to deal with heterogeneous visual data; iii) new data capture devices, such as the Kinect, bridge between algorithms for 2D image understanding and 3D model analysis. These driving forces have emerged only recently, and we believe that the computer graphics and computer vision communities are still in the beginning of their honeymoon phase. In this work we survey recent research on how computer vision techniques bene�t computer graphics techniques and vice versa, and cover research on analysis, manipulation, synthesis, and interaction. We also discuss existing problems and suggest possible further research directions

    Semantics-Driven Large-Scale 3D Scene Retrieval

    Get PDF

    Realistic reconstruction and rendering of detailed 3D scenarios from multiple data sources

    Get PDF
    During the last years, we have witnessed significant improvements in digital terrain modeling, mainly through photogrammetric techniques based on satellite and aerial photography, as well as laser scanning. These techniques allow the creation of Digital Elevation Models (DEM) and Digital Surface Models (DSM) that can be streamed over the network and explored through virtual globe applications like Google Earth or NASA WorldWind. The resolution of these 3D scenes has improved noticeably in the last years, reaching in some urban areas resolutions up to 1m or less for DEM and buildings, and less than 10 cm per pixel in the associated aerial imagery. However, in rural, forest or mountainous areas, the typical resolution for elevation datasets ranges between 5 and 30 meters, and typical resolution of corresponding aerial photographs ranges between 25 cm to 1 m. This current level of detail is only sufficient for aerial points of view, but as the viewpoint approaches the surface the terrain loses its realistic appearance. One approach to augment the detail on top of currently available datasets is adding synthetic details in a plausible manner, i.e. including elements that match the features perceived in the aerial view. By combining the real dataset with the instancing of models on the terrain and other procedural detail techniques, the effective resolution can potentially become arbitrary. There are several applications that do not need an exact reproduction of the real elements but would greatly benefit from plausibly enhanced terrain models: videogames and entertainment applications, visual impact assessment (e.g. how a new ski resort would look), virtual tourism, simulations, etc. In this thesis we propose new methods and tools to help the reconstruction and synthesis of high-resolution terrain scenes from currently available data sources, in order to achieve realistically looking ground-level views. In particular, we decided to focus on rural scenarios, mountains and forest areas. Our main goal is the combination of plausible synthetic elements and procedural detail with publicly available real data to create detailed 3D scenes from existing locations. Our research has focused on the following contributions: - An efficient pipeline for aerial imagery segmentation - Plausible terrain enhancement from high-resolution examples - Super-resolution of DEM by transferring details from the aerial photograph - Synthesis of arbitrary tree picture variations from a reduced set of photographs - Reconstruction of 3D tree models from a single image - A compact and efficient tree representation for real-time rendering of forest landscapesDurant els darrers anys, hem presenciat avenços significatius en el modelat digital de terrenys, principalment gràcies a tècniques fotogramètriques, basades en fotografia aèria o satèl·lit, i a escàners làser. Aquestes tècniques permeten crear Models Digitals d'Elevacions (DEM) i Models Digitals de Superfícies (DSM) que es poden retransmetre per la xarxa i ser explorats mitjançant aplicacions de globus virtuals com ara Google Earth o NASA WorldWind. La resolució d'aquestes escenes 3D ha millorat considerablement durant els darrers anys, arribant a algunes àrees urbanes a resolucions d'un metre o menys per al DEM i edificis, i fins a menys de 10 cm per píxel a les fotografies aèries associades. No obstant, en entorns rurals, boscos i zones muntanyoses, la resolució típica per a dades d'elevació es troba entre 5 i 30 metres, i per a les corresponents fotografies aèries varia entre 25 cm i 1m. Aquest nivell de detall només és suficient per a punts de vista aeris, però a mesura que ens apropem a la superfície el terreny perd tot el realisme. Una manera d'augmentar el detall dels conjunts de dades actuals és afegint a l'escena detalls sintètics de manera plausible, és a dir, incloure elements que encaixin amb les característiques que es perceben a la vista aèria. Així, combinant les dades reals amb instàncies de models sobre el terreny i altres tècniques de detall procedural, la resolució efectiva del model pot arribar a ser arbitrària. Hi ha diverses aplicacions per a les quals no cal una reproducció exacta dels elements reals, però que es beneficiarien de models de terreny augmentats de manera plausible: videojocs i aplicacions d'entreteniment, avaluació de l'impacte visual (per exemple, com es veuria una nova estació d'esquí), turisme virtual, simulacions, etc. En aquesta tesi, proposem nous mètodes i eines per ajudar a la reconstrucció i síntesi de terrenys en alta resolució partint de conjunts de dades disponibles públicament, per tal d'aconseguir vistes a nivell de terra realistes. En particular, hem decidit centrar-nos en escenes rurals, muntanyes i àrees boscoses. El nostre principal objectiu és la combinació d'elements sintètics plausibles i detall procedural amb dades reals disponibles públicament per tal de generar escenes 3D d'ubicacions existents. La nostra recerca s'ha centrat en les següents contribucions: - Un pipeline eficient per a segmentació d'imatges aèries - Millora plausible de models de terreny a partir d'exemples d’alta resolució - Super-resolució de models d'elevacions transferint-hi detalls de la fotografia aèria - Síntesis d'un nombre arbitrari de variacions d’imatges d’arbres a partir d'un conjunt reduït de fotografies - Reconstrucció de models 3D d'arbres a partir d'una única fotografia - Una representació compacta i eficient d'arbres per a navegació en temps real d'escenesPostprint (published version

    Sketch recognition of digital ink diagrams : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Figures are either re-used with permission, or abstracted with permission from the source article.Sketch recognition of digital ink diagrams is the process of automatically identifying hand-drawn elements in a diagram. This research focuses on the simultaneous grouping and recognition of shapes in digital ink diagrams. In order to recognise a shape, we need to group strokes belonging to a shape, however, strokes cannot be grouped until the shape is identified. Therefore, we treat grouping and recognition as a simultaneous task. Our grouping technique uses spatial proximity to hypothesise shape candidates. Many of the hypothesised shape candidates are invalid, therefore we need a way to reject them. We present a novel rejection technique based on novelty detection. The rejection method uses proximity measures to validate a shape candidate. In addition, we investigate on improving the accuracy of the current shape recogniser by adding extra features. We also present a novel connector recognition system that localises connector heads around recognised shapes. We perform a full comparative study on two datasets. The results show that our approach is significantly more accurate in finding shapes and faster on process diagram compared to Stahovich et al. (2014), which the results show the superiority of our approach in terms of computation time and accuracy. Furthermore, we evaluate our system on two public datasets and compare our results with other approaches reported in the literature that have used these dataset. The results show that our approach is more accurate in finding and recognising the shapes in the FC dataset (by finding and recognising 91.7% of the shapes) compared to the reported results in the literature

    Automatic interpretation of clock drawings for computerised assessment of dementia

    Get PDF
    The clock drawing test (CDT) is a standard neurological test for detection of cognitive impairment. A computerised version of the test has potential to improve test accessibility and accuracy. CDT sketch interpretation is one of the first stages in the analysis of the computerised test. It produces a set of recognised digits and symbols together with their positions on the clock face. Subsequently, these are used in the test scoring. This is a challenging problem because the average CDT taker has a high likelihood of cognitive impairment, and writing is one of the first functional activities to be affected. Current interpretation systems perform less well on this kind of data due to its unintelligibility. In this thesis, a novel automatic interpretation system for CDT sketch is proposed and developed. The proposed interpretation system and all the related algorithms developed in this thesis are evaluated using a CDT data set collected for this study. This data consist of two sets, the first set consisting of 65 drawings made by healthy people, and the second consisting of 100 drawings reproduced from drawings of dementia patients. This thesis has four main contributions. The first is a conceptual model of the proposed CDT sketch interpretation system based on integrating prior knowledge of the expected CDT sketch structure and human reasoning into the drawing interpretation system. The second is a novel CDT sketch segmentation algorithm based on supervised machine learning and a new set of temporal and spatial features automatically extracted from the CDT data. The evaluation of the proposed method shows that it outperforms the current state-of-the-art method for CDT drawing segmentation. The third contribution is a new v handwritten digit recognition algorithm based on a set of static and dynamic features extracted from handwritten data. The algorithm combines two classifiers, fuzzy k-nearest neighbour’s classifier with a Convolutional Neural Network (CNN), which take advantage both of static and dynamic data representation. The proposed digit recognition algorithm is shown to outperform each classifier individually in terms of recognition accuracy. The final contribution of this study is the probabilistic Situational Bayesian Network (SBN), which is a new hierarchical probabilistic model for addressing the problem of fusing diverse data sources, such as CDT sketches created by healthy volunteers and dementia patients, in a probabilistic Bayesian network. The evaluation of the proposed SBN-based CDT sketch interpretation system on CDT data shows highly promising results, with 100% recognition accuracy for heathy CDT drawings and 97.15% for dementia data. To conclude, the proposed automatic CDT sketch interpretation system shows high accuracy in terms of recognising different sketch objects and thus paves the way for further research in dementia and clinical computer-assisted diagnosis of dementia

    Room layout estimation on mobile devices

    Get PDF
    Room layout generation is the problem of generating a drawing or a digital model of an existing room from a set of measurements such as laser data or images. The generation of floor plans can find application in the building industry to assess the quality and the correctness of an ongoing construction w.r.t. the initial model, or to quickly sketch the renovation of an apartment. Real estate industry can rely on automatic generation of floor plans to ease the process of checking the livable surface and to propose virtual visits to prospective customers. As for the general public, the room layout can be integrated into mixed reality games to provide a better immersiveness experience, or used in other related augmented reality applications such room redecoration. The goal of this industrial thesis (CIFRE) is to investigate and take advantage of the state-of-the art mobile devices in order to automate the process of generating room layouts. Nowadays, modern mobile devices usually come a wide range of sensors, such as inertial motion unit (IMU), RGB cameras and, more recently, depth cameras. Moreover, tactile touchscreens offer a natural and simple way to interact with the user, thus favoring the development of interactive applications, in which the user can be part of the processing loop. This work aims at exploiting the richness of such devices to address the room layout generation problem. The thesis has three major contributions. We first show how the classic problem of detecting vanishing points in an image can benefit from an a-priori given by the IMU sensor. We propose a simple and effective algorithm for detecting vanishing points relying on the gravity vector estimated by the IMU. A new public dataset containing images and the relevant IMU data is introduced to help assessing vanishing point algorithms and foster further studies in the field. As a second contribution, we explored the state of-the-art of real-time localization and map optimization algorithms for RGB-D sensors. Real-time localization is a fundamental task to enable augmented reality applications, and thus it is a critical component when designing interactive applications. We propose an evaluation of existing algorithms for the common desktop set-up in order to be employed on a mobile device. For each considered method, we assess the accuracy of the localization as well as the computational performances when ported on a mobile device. Finally, we present a proof of concept of application able to generate the room layout relying on a Project Tango tablet equipped with an RGB-D sensor. In particular, we propose an algorithm that incrementally processes and fuses the 3D data provided by the sensor in order to obtain the layout of the room. We show how our algorithm can rely on the user interactions in order to correct the generated 3D model during the acquisition process
    corecore