4,902 research outputs found

    Creation of virtual worlds from 3D models retrieved from content aware networks based on sketch and image queries

    Get PDF
    The recent emergence of user generated content requires new content creation tools that will be both easy to learn and easy to use. These new tools should enable the user to construct new high-quality content with minimum effort; it is essential to allow existing multimedia content to be reused as building blocks when creating new content. In this work we present a new tool for automatically constructing virtual worlds with minimum user intervention. Users can create these worlds by drawing a simple sketch, or by using interactively segmented 2D objects from larger images. The system receives as a query the sketch or the segmented image, and uses it to find similar 3D models that are stored in a Content Centric Network. The user selects a suitable model from the retrieved models, and the system uses it to automatically construct a virtual 3D world

    Sketching space

    Get PDF
    In this paper, we present a sketch modelling system which we call Stilton. The program resembles a desktop VRML browser, allowing a user to navigate a three-dimensional model in a perspective projection, or panoramic photographs, which the program maps onto the scene as a `floor' and `walls'. We place an imaginary two-dimensional drawing plane in front of the user, and any geometric information that user sketches onto this plane may be reconstructed to form solid objects through an optimization process. We show how the system can be used to reconstruct geometry from panoramic images, or to add new objects to an existing model. While panoramic imaging can greatly assist with some aspects of site familiarization and qualitative assessment of a site, without the addition of some foreground geometry they offer only limited utility in a design context. Therefore, we suggest that the system may be of use in `just-in-time' CAD recovery of complex environments, such as shop floors, or construction sites, by recovering objects through sketched overlays, where other methods such as automatic line-retrieval may be impossible. The result of using the system in this manner is the `sketching of space' - sketching out a volume around the user - and once the geometry has been recovered, the designer is free to quickly sketch design ideas into the newly constructed context, or analyze the space around them. Although end-user trials have not, as yet, been undertaken we believe that this implementation may afford a user-interface that is both accessible and robust, and that the rapid growth of pen-computing devices will further stimulate activity in this area

    Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling

    Full text link
    We study 3D shape modeling from a single image and make contributions to it in three aspects. First, we present Pix3D, a large-scale benchmark of diverse image-shape pairs with pixel-level 2D-3D alignment. Pix3D has wide applications in shape-related tasks including reconstruction, retrieval, viewpoint estimation, etc. Building such a large-scale dataset, however, is highly challenging; existing datasets either contain only synthetic data, or lack precise alignment between 2D images and 3D shapes, or only have a small number of images. Second, we calibrate the evaluation criteria for 3D shape reconstruction through behavioral studies, and use them to objectively and systematically benchmark cutting-edge reconstruction algorithms on Pix3D. Third, we design a novel model that simultaneously performs 3D reconstruction and pose estimation; our multi-task learning approach achieves state-of-the-art performance on both tasks.Comment: CVPR 2018. The first two authors contributed equally to this work. Project page: http://pix3d.csail.mit.ed

    Towards an All-Purpose Content-Based Multimedia Information Retrieval System

    Full text link
    The growth of multimedia collections - in terms of size, heterogeneity, and variety of media types - necessitates systems that are able to conjointly deal with several forms of media, especially when it comes to searching for particular objects. However, existing retrieval systems are organized in silos and treat different media types separately. As a consequence, retrieval across media types is either not supported at all or subject to major limitations. In this paper, we present vitrivr, a content-based multimedia information retrieval stack. As opposed to the keyword search approach implemented by most media management systems, vitrivr makes direct use of the object's content to facilitate different types of similarity search, such as Query-by-Example or Query-by-Sketch, for and, most importantly, across different media types - namely, images, audio, videos, and 3D models. Furthermore, we introduce a new web-based user interface that enables easy-to-use, multimodal retrieval from and browsing in mixed media collections. The effectiveness of vitrivr is shown on the basis of a user study that involves different query and media types. To the best of our knowledge, the full vitrivr stack is unique in that it is the first multimedia retrieval system that seamlessly integrates support for four different types of media. As such, it paves the way towards an all-purpose, content-based multimedia information retrieval system

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Posing 3D Models from Drawing

    Get PDF
    Inferring the 3D pose of a character from a drawing is a complex and under-constrained problem. Solving it may help automate various parts of an animation production pipeline such as pre-visualisation. In this paper, a novel way of inferring the 3D pose from a monocular 2D sketch is proposed. The proposed method does not make any external assumptions about the model, allowing it to be used on different types of characters. The inference of the 3D pose is formulated as an optimisation problem and a parallel variation of the Particle Swarm Optimisation algorithm called PARAC-LOAPSO is utilised for searching the minimum. Testing in isolation as well as part of a larger scene, the presented method is evaluated by posing a lamp, a horse and a human character. The results show that this method is robust, highly scalable and is able to be extended to various types of models
    corecore