43 research outputs found

    20 HUMAN TRACKING BY EFFICIENT MODEL FITTING USING A PATH RELlNKING PARTICLE FILTER (PRPF)

    Get PDF
    Automatic visual analysis of human motion is an active research topic in Computer Vision and its interest has been growing in the last decade. Visual analysis of human movement is used in the fields of Medical, Occupational and Sports Biomechanics. The main purpose of this staudy is to present a 2D model-based Path Relinking Particle Filter (PRPF) algorithm for human motion tracking and analysis applications

    Artificial Intelligence and Its Applications

    Get PDF

    Multiple Particle Positron Emission Particle Tracking and its Application to Flows in Porous Media

    Get PDF
    Positron emission particle tracking (PEPT) is a method for flow interrogation capable of measurement in opaque systems. In this work a novel method for PEPT is introduced that allows for simultaneous tracking of multiple tracers. This method (M-PEPT) is adapted from optical particle tracking techniques and is designed to track an arbitrary number of positron-emitting tracer-particles entering and leaving the field of view of a detector array. M-PEPT is described, and its applicability is demonstrated for a number of measurements ranging from turbulent shear flow interrogation to cell migration. It is found that this method can locate over 80 particles simultaneously with spatial resolution of order 0.2 mm at tracking frequency of 10 Hz and, at lower particle number densities, can achieve similar spatial resolution at tracking frequency 1000 Hz. The method is limited in its ability to resolve particles approaching close to one another, and suggestions for future improvements are made.M-PEPT is used to study flow in porous media constructed from packing of glass beads of different diameters. Anomalous (i.e. non-Fickian) dispersion of tracers is studied in these systems under the continuous time random walk (CTRW) paradigm. Pore-length transition time distributions are measured, and it is found that in all cases, these distributions indicate the presence of long waiting times between transitions, confirming the central assumption of the CTRW model. All systems demonstrate non-Fickian spreading of tracers at early and intermediate times with a late time recovery of Fickian dispersion, but a clear link between transition time distributions and tracer spreading is not made. Velocity increment statistics are examined, and it is found that temporal velocity increments in the mean-flow direction show a universal scaling. Spatial velocity increments also appear to collapse to a similar form, but there is insufficient data to determine the presence of universal scaling

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Fast Isotope Ratio Mass Spectrometry (FIRMS): A Tandem Mass Spectrometry Technique for the Rapid and Semi-Comprehensive Evaluation of Isotope Ratios

    Get PDF
    Isotope ratios (IRs) are a measure of the variation in abundance of light isotopes versus heavy isotopes of an element, e.g. 1H/2H,12C/13C, and 14N/15N. Because IRs change as a molecule undergoes certain chemical and physical processes, they represent unique fingerprints that can be used to trace the source of a chemical compound. Current techniques for determination of IRs each have major limitations, such as loss of structural information, vulnerability to contamination, high cost, large sample size requirements, low precision, limited applicability, and lengthy analysis. Fast Isotope Ratio Mass Spectrometry (FIRMS) was developed as a next-generation analytical technique for robust measurement of IRs using tandem mass spectrometric data. Based on the FIRMS nonlinear mathematical model, the difference between predicted and experimental tandem mass spectrometric data was minimized by modifying isotopic fractional abundances of the atoms involved. FIRMS was used to calculate the isotope abundances of molecules of 17 compounds. FIRMS produced excellent precision, with IRs standard deviations of less than 1‰, for δ13C compared with IRMS in a fraction of the time. FIRMS also produced excellent accuracy for δ13C values with an absolute error of less than 1.6‰ compared to IRMS. It was also successfully coupled with LCMSMS to analyze δ13C for DIMPA, caffeine and acetylsalicylic acid with standard deviation of less than 1‰ and accuracies within 1‰ compared to IRMS. The bivariate plot of FIRMS versus IRMS showed an excellent R2 of 0.992 with a slope of 1, validating the new technique as an accurate isotope ratio measurement technique. FIRMS offers several advantages over other methods of IR determination, and may ultimately become the preferred method for determination of IRs. The disciplines that will benefit from development of FIRMS include: 1) forensic science, 2) environmental chemistry, 3) geology, 4) geochemistry, 5) cosmochemistry, 6) food sciences, 7) earth science, and 8) pharmaceutical science. FIRMS will make IR analysis more widely available, fast and less expensive for scientists to conduct research in these fields, as well as train new graduate students for future scientific research and development in this area
    corecore