121 research outputs found

    Deteksi Citra dan Posisi Barcode Menggunakan Metode Oriented Fast and Rotated Brief (ORB) dan Maximally Stable Extremal Regions (MSER)

    Get PDF
    Warehouse yang digunakan untuk tempat menyimpan barang yang di kirim dari produsen ke konsumen. Dari kondisi yang ada di lapangan, antara barang yang ada di warehouse dan catatan inventaris sering terdapat kesalahan. Kesalahan yang kerap terjadi adalah salah penempatan barang yang disebabkan oleh kelalaian yang dilakukan oleh operator disana. Hal ini kerap menyebabkan kekeliruan antara inventaris dalam warehouse dan catatan inventaris yang dimiliki. Dalam pengecekan inventaris yang ada pada warehouse masih menggunakan operator dalam mengecek tiap palet yang ada pada rak setinggi kurang lebih 10 meter. Hal ini membutuhkan waktu rata rata 8 menit untuk melakukan pengecekan dalam satu rak yang terdiri dari 12 barcode. Sistem ini dirancang untuk membantu penyelesaian masalah tersebut dengan membuat drone yang dapat melakukan pengecekan secara otomatis dan memindai barcode menggunakan image processing beserta metode ORB dan MSER untuk mengetahui posisi barang tersebut. Dari hasil yang didapat sistem ini berhasil membaca rata rata 12 barcode dalam 4 menit. Dari yang semula dalam pengecekan manual 12 barcode membutuhkan waktu 8 menit, menghasilkan selisih 4 menit dalam pengecekan 12 barcode

    Towards an Autonomous Industry 4.0 Warehouse: A UAV and Blockchain-Based System for Inventory and Traceability Applications in Big Data-Driven Supply Chain Management

    Get PDF
    [Abstract] Industry 4.0 has paved the way for a world where smart factories will automate and upgrade many processes through the use of some of the latest emerging technologies. One of such technologies is Unmanned Aerial Vehicles (UAVs), which have evolved a great deal in the last years in terms of technology (e.g., control units, sensors, UAV frames) and have significantly reduced their cost. UAVs can help industry in automatable and tedious tasks, like the ones performed on a regular basis for determining the inventory and for preserving item traceability. In such tasks, especially when it comes from untrusted third parties, it is essential to determine whether the collected information is valid or true. Likewise, ensuring data trustworthiness is a key issue in order to leverage Big Data analytics to supply chain efficiency and effectiveness. In such a case, blockchain, another Industry 4.0 technology that has become very popular in other fields like finance, has the potential to provide a higher level of transparency, security, trust and efficiency in the supply chain and enable the use of smart contracts. Thus, in this paper, we present the design and evaluation of a UAV-based system aimed at automating inventory tasks and keeping the traceability of industrial items attached to Radio-Frequency IDentification (RFID) tags. To confront current shortcomings, such a system is developed under a versatile, modular and scalable architecture aimed to reinforce cyber security and decentralization while fostering external audits and big data analytics. Therefore, the system uses a blockchain and a distributed ledger to store certain inventory data collected by UAVs, validate them, ensure their trustworthiness and make them available to the interested parties. In order to show the performance of the proposed system, different tests were performed in a real industrial warehouse, concluding that the system is able to obtain the inventory data really fast in comparison to traditional manual tasks, while being also able to estimate the position of the items when hovering over them thanks to their tag’s signal strength. In addition, the performance of the proposed blockchain-based architecture was evaluated in different scenarios.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    Geometric, Semantic, and System-Level Scene Understanding for Improved Construction and Operation of the Built Environment

    Full text link
    Recent advances in robotics and enabling fields such as computer vision, deep learning, and low-latency data passing offer significant potential for developing efficient and low-cost solutions for improved construction and operation of the built environment. Examples of such potential solutions include the introduction of automation in environment monitoring, infrastructure inspections, asset management, and building performance analyses. In an effort to advance the fundamental computational building blocks for such applications, this dissertation explored three categories of scene understanding capabilities: 1) Localization and mapping for geometric scene understanding that enables a mobile agent (e.g., robot) to locate itself in an environment, map the geometry of the environment, and navigate through it; 2) Object recognition for semantic scene understanding that allows for automatic asset information extraction for asset tracking and resource management; 3) Distributed coupling analysis for system-level scene understanding that allows for discovery of interdependencies between different built-environment processes for system-level performance analyses and response-planning. First, this dissertation advanced Simultaneous Localization and Mapping (SLAM) techniques for convenient and low-cost locating capabilities compared with previous work. To provide a versatile Real-Time Location System (RTLS), an occupancy grid mapping enhanced visual SLAM (vSLAM) was developed to support path planning and continuous navigation that cannot be implemented directly on vSLAM’s original feature map. The system’s localization accuracy was experimentally evaluated with a set of visual landmarks. The achieved marker position measurement accuracy ranges from 0.039m to 0.186m, proving the method’s feasibility and applicability in providing real-time localization for a wide range of applications. In addition, a Self-Adaptive Feature Transform (SAFT) was proposed to improve such an RTLS’s robustness in challenging environments. As an example implementation, the SAFT descriptor was implemented with a learning-based descriptor and integrated into a vSLAM for experimentation. The evaluation results on two public datasets proved the feasibility and effectiveness of SAFT in improving the matching performance of learning-based descriptors for locating applications. Second, this dissertation explored vision-based 1D barcode marker extraction for automated object recognition and asset tracking that is more convenient and efficient than the traditional methods of using barcode or asset scanners. As an example application in inventory management, a 1D barcode extraction framework was designed to extract 1D barcodes from video scan of a built environment. The performance of the framework was evaluated with video scan data collected from an active logistics warehouse near Detroit Metropolitan Airport (DTW), demonstrating its applicability in automating inventory tracking and management applications. Finally, this dissertation explored distributed coupling analysis for understanding interdependencies between processes affecting the built environment and its occupants, allowing for accurate performance and response analyses compared with previous research. In this research, a Lightweight Communications and Marshalling (LCM)-based distributed coupling analysis framework and a message wrapper were designed. This proposed framework and message wrapper were tested with analysis models from wind engineering and structural engineering, where they demonstrated the abilities to link analysis models from different domains and reveal key interdependencies between the involved built-environment processes.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/155042/1/lichaox_1.pd

    A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle Detection and Collision Avoidance

    Get PDF
    [Abstract] Advances in Unmanned Aerial Vehicles (UAVs), also known as drones, offer unprecedented opportunities to boost a wide array of large-scale Internet of Things (IoT) applications. Nevertheless, UAV platforms still face important limitations mainly related to autonomy and weight that impact their remote sensing capabilities when capturing and processing the data required for developing autonomous and robust real-time obstacle detection and avoidance systems. In this regard, Deep Learning (DL) techniques have arisen as a promising alternative for improving real-time obstacle detection and collision avoidance for highly autonomous UAVs. This article reviews the most recent developments on DL Unmanned Aerial Systems (UASs) and provides a detailed explanation on the main DL techniques. Moreover, the latest DL-UAV communication architectures are studied and their most common hardware is analyzed. Furthermore, this article enumerates the most relevant open challenges for current DL-UAV solutions, thus allowing future researchers to define a roadmap for devising the new generation affordable autonomous DL-UAV IoT solutions.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431C 2016-047Xunta de Galicia; , ED431G/01Centro Singular de Investigación de Galicia; PC18/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    Two-Dimensional Planetary Surface Landers

    Get PDF
    We proposed to develop a new landing approach that significantly reduces development time and obviates the most complicated, most expensive, and highest-risk phase of a landing mission. The concept is a blanket- or carpet-like two-dimensional (2D) lander (~1-m 1-m surface area and <1-cm thick) with a low mass/drag ratio, which allows the lander to efficiently shed its approach velocity and provide a more robust structure for landing integrity. The form factor of these landers allows dozens to be stacked on a single spacecraft for transport and distributed en masse to the surface. Lander surfaces will be populated on both sides by surface-mount, low-profile sensors and instruments, surface-mount telecom, solar cells, batteries, processors, and memory. Landers will also incorporate thin flexible electronics, made possible in part by printable electronics technology. The mass and size of these highly capable technologies further reduces the required stiffness and mass of the lander structures to the point that compliant, lightweight, robust landers capable of passive landings are possible. This capability avoids the costly, complex use of rockets, radar, and associated structure and control systems. This approach is expected to provide an unprecedented science payload mass to spacecraft mass ratio of approximately 80% (estimated based on current knowledge). This compared to ~1% for Pathfinder, ~17% for MER, and 22% for MSL rovers. Clearly, one difference is rovers vs. a lower capability lander. An outcome of the Phase I study is a clear roadmap for near-term demonstration and long-term technology development

    Impact of industry 4.0 tools in logistics : case analysis in Colombia

    Get PDF
    Este trabajo presenta un análisis de los escenarios de aplicación de las herramientas de la industria 4.0 (impresión 3D, computación en la nube, realidad aumentada (AR), Internet de las cosas (IoT) y robots autónomos) y su impacto en la logística a escala internacional con énfasis en el contexto colombiano, encontrando beneficios en términos de reducción de costos y tiempos, así como optimización de recursos y el aporte de dichas herramientas en la toma de decisiones dentro de las organizaciones. También se realizó un análisis de 43 empresas a nivel internacional que han implementado herramientas 4.0, señalando sus principales áreas de aplicación. Finalmente, se identificaron las áreas potenciales de aplicación de cada herramienta en Colombia, teniendo en cuenta las diferencias entre su nivel de desarrollo a nivel mundial y en el país.This work presents an analysis of the application scenarios of industry 4.0 tools (3D printing, cloud computing, augmented reality (AR), the internet of things (IoT) and autonomous robots) and their impact on logistics on an international scale with an emphasis in the Colombian context, finding benefits in terms of cost and time reduction as well as resource optimization and the contribution of said tools in decision-making within organizations. An analysis was also carried out of 43 companies at an international level that have implemented 4.0 tools, pointing out their main areas of application. Finally, the potential areas of application for each tool in Colombia were identified whilst keeping in mind the differences between their development level worldwide and in the country

    The selection and evaluation of a sensory technology for interaction in a warehouse environment

    Get PDF
    In recent years, Human-Computer Interaction (HCI) has become a significant part of modern life as it has improved human performance in the completion of daily tasks in using computerised systems. The increase in the variety of bio-sensing and wearable technologies on the market has propelled designers towards designing more efficient, effective and fully natural User-Interfaces (UI), such as the Brain-Computer Interface (BCI) and the Muscle-Computer Interface (MCI). BCI and MCI have been used for various purposes, such as controlling wheelchairs, piloting drones, providing alphanumeric inputs into a system and improving sports performance. Various challenges are experienced by workers in a warehouse environment. Because they often have to carry objects (referred to as hands-full) it is difficult to interact with traditional devices. Noise undeniably exists in some industrial environments and it is known as a major factor that causes communication problems. This has reduced the popularity of using verbal interfaces with computer applications, such as Warehouse Management Systems. Another factor that effects the performance of workers are action slips caused by a lack of concentration during, for example, routine picking activities. This can have a negative impact on job performance and allow a worker to incorrectly execute a task in a warehouse environment. This research project investigated the current challenges workers experience in a warehouse environment and the technologies utilised in this environment. The latest automation and identification systems and technologies are identified and discussed, specifically the technologies which have addressed known problems. Sensory technologies were identified that enable interaction between a human and a computerised warehouse environment. Biological and natural behaviours of humans which are applicable in the interaction with a computerised environment were described and discussed. The interactive behaviours included the visionary, auditory, speech production and physiological movement where other natural human behaviours such paying attention, action slips and the action of counting items were investigated. A number of modern sensory technologies, devices and techniques for HCI were identified with the aim of selecting and evaluating an appropriate sensory technology for MCI. iii MCI technologies enable a computer system to recognise hand and other gestures of a user, creating means of direct interaction between a user and a computer as they are able to detect specific features extracted from a specific biological or physiological activity. Thereafter, Machine Learning (ML) is applied in order to train a computer system to detect these features and convert them to a computer interface. An application of biomedical signals (bio-signals) in HCI using a MYO Armband for MCI is presented. An MCI prototype (MCIp) was developed and implemented to allow a user to provide input to an HCI, in a hands-free and hands-full situation. The MCIp was designed and developed to recognise the hand-finger gestures of a person when both hands are free or when holding an object, such a cardboard box. The MCIp applies an Artificial Neural Network (ANN) to classify features extracted from the surface Electromyography signals acquired by the MYO Armband around the forearm muscle. The MCIp provided the results of data classification for gesture recognition to an accuracy level of 34.87% with a hands-free situation. This was done by employing the ANN. The MCIp, furthermore, enabled users to provide numeric inputs to the MCIp system hands-full with an accuracy of 59.7% after a training session for each gesture of only 10 seconds. The results were obtained using eight participants. Similar experimentation with the MYO Armband has not been found to be reported in any literature at submission of this document. Based on this novel experimentation, the main contribution of this research study is a suggestion that the application of a MYO Armband, as a commercially available muscle-sensing device on the market, has the potential as an MCI to recognise the finger gestures hands-free and hands-full. An accurate MCI can increase the efficiency and effectiveness of an HCI tool when it is applied to different applications in a warehouse where noise and hands-full activities pose a challenge. Future work to improve its accuracy is proposed

    Material Management Framework utilizing Near Real-Time Monitoring of Construction Operations

    Get PDF
    Materials management is a vital process in the delivery of construction facilities. Studies by the Construction Industry Institute (CII) have demonstrated that materials and installed equipment can constitute 40– 70% of the total construction hard cost and affect 80% of the project schedule. Despite its significance, most of the construction industry sectors are suffering from poor material management processes including inaccurate warehouse records, over-ordering and large surpluses of material at project completion, poor site storage practices, running out of materials, late deliveries, double-handling of components, out-of-specification material, and out of sequence deliveries which all result in low productivity, delay in construction and cost overruns. Inefficient material management can be attributed to the complex, unstructured, and dynamic nature of the construction industry, which has not been considered in a large number of studies available in this field. The literature reveals that available computer-based materials management systems focus on (1) integration of the materials management functions, and (2) application of Automated Data Collection (ADC) technologies to collect materials localization and tracking data for their computerized materials management systems. Moreover in studies that focused on applying ADC technologies in construction materials management, positioning and tracking critical resources in construction sites, and identifying unique materials received at the job site are the main applications of their used technologies. Even though, various studies have improved materials management processes copiously in the construction industry, the benefits of considering the dynamic nature of construction (in terms of near real-time progress monitoring using state of the art technologies and techniques) and its integration with a dynamic materials management system have been left out. So, in contrast with other studies, this research presents a construction materials management framework capable of considering the dynamic nature of construction projects. It includes a vital component to monitor project progress in near real-time to estimate the installation and consumption of materials. This framework consists of three models: “preconstruction model,” “construction model,” and “data analysis and reporting model.” This framework enables (1) generation of optimized material delivery schedules based on Material Requirement Planning (MRP) and minimum total cost, (2) issuance of material Purchase Orders (POs) according to optimized delivery schedules, (3) tracking the status of POs (Expediting methods), (4) collection and assessment of material data as it arrives on site, (5) considering the inherent dynamics of construction operations by monitoring project progress to update project schedule and estimate near real-time consumption of materials and eventually (6) updating MRP and optimized delivery schedule frequently throughout the construction phase. An optimized material delivery schedule and an optimized purchase schedule with the least cost are generated by the preconstruction model to avoid consequences of early/late purchasing and excess/inadequate purchasing. Accurate assessment of project progress and estimation of installed or consumed materials are essential for an effective construction material management system. The construction model focuses on the collection of near real-time site data using ADC technologies. Project progress is visualized from two different perspectives, comparing as-built with as-planned and comparing various as-built status captured on consecutive points of time. Due to the recent improvements in digital photography and webcams, which made this technology more cost-effective and practical for monitoring project progress, digital imaging (including 360° images) is selected and applied for project progress monitoring in the construction (data acquisition) model. In the last model, which is the data analysis and reporting model, Deep Learning (DL) and image processing algorithms are proposed to visualize and detect actual progress in terms of built elements in near real-time. In contrast with the other studies in which conventional computer vision algorithms are often used to monitor projects progress, in this research, a deep Convolutional Auto-Encoder (CAE) and Mask Region-based Convolutional Neural Network (R-CNN) are utilized to facilitate vision-based indoor and outdoor progress monitoring of construction operations. The updated project schedule based on the actual progress is the output of this model, and it is used as the primary input for the developed material management framework to update MRP, optimized material delivery, and purchase schedules, respectively. Applicability of the models in the developed material management framework has been tested through laboratory and field experiments. The results demonstrated the accuracy and capabilities of the developed models in the framework

    From Conventional to IT Based Visual Management:A Conceptual Discussion for Lean Construction

    Get PDF
    Lean construction and construction automation are two of the important efforts to improve the performance of the construction industry. However, apart from a small number of scholarly articles and implementation prototypes, the lean and digital construction movements seem to be largely running independent of each other. This paper aims at exploring those connections between Visual Management (VM), a fundamental information management strategy in lean construction, and emerging technologies, demonstrating the synergy between the two concepts over potential implementation scenarios and establishing their conceptual connections in construction. Consequently, the hypothesis of the paper is there is a significant synergy between emerging technologies (construction automation) and visual/sensory information management strategies (Visual Management) in lean construction. The hypothesis is explored by (i) discussing how emerging technologies can support conventional VM tools and techniques and (ii) presenting a conceptual architecture to integrate emerging technologies, such as the Internet of Things, Augmented Reality, context aware and mobile computing, the use of drones and quadcopters, auto identification (AutoID) systems and laser scanning, to support lean construction and VM on construction sites. Futuristic scenarios for the implementation of the context-aware VM in application areas such as production control, production levelling, quality control, project planning and control, plant maintenance and safety control are examined from a lean construction perspective, alongside the presentation of a higher-level implementation architecture to integrate various VM and emerging technology components to support the implementation in a holistic picture. The use of such scenario based approach was found useful in summarising the technology components, their interconnections and possible implementation areas in relation with VM. This paper demonstrates how the integration of conventional and IT based visual management approaches is within reach and holds the potential to enhance the construction and maintenance phase of complex, large-scale construction projects by reviewing the synergies between operational VM concepts and IT

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications
    • …
    corecore