171 research outputs found

    Diseño de detectores robustos en aplicaciones radar

    Get PDF
    El problema de la detección automática de blancos radar puede ser formulado como un test de hipótesis binaria, en el que el sistema tiene que decir a favor de la hipótesis alternativa H1 (blanco presente) o de la hipótesis nula H0 (blanco ausente). El criterio de Neyman-Pearson, NP, es el más extendido en aplicaciones radar. Este detector trata de maximizar la probabilidad de detección, PD, manteniendo la probabilidad de falsa alarma, PFA, igual o inferior a un valor determinado. Cuando las funciones de verosimilitud son conocidas, una posible implementación del detector NP consiste en comparar el cociente de verosimilitud con un umbral fijado por los requisitos de PF A (LRT). Se trata de un detector paramétrico que puede presentar grandes pérdidas de detección cuando las características estadísticas del blanco y/o interferencia asumidas en el diseño difieren de las reales. En situaciones prácticas, las parámetros de la interferencia pueden estimarse a partir de medidas obtenidas en el entorno del radar, pero las propiedades del blanco pueden ser difíciles de estimar. Por lo que, para el diseño de detectores, se asume diferentes modelos de blanco cuyos parámetros, como su coeficiente de correlación o su frecuencia Doppler, son variables aleatorias con funciones de densidad de probabilidad conocidas. En estos casos, el problema de la detección se plantea como un test de hipótesis compuesto y, una regla de decisión basada en el cociente de verosimilitud promediado (ALR) es una posible implementación del detector NP. Esta realización requiere la resolución de integrales muy complejas que pueden hasta no tener una solución cerrada y se proponen soluciones sub-óptimas basadas en técnicas de integración numérica y otras aproximaciones numéricas. En esta Tesis Doctoral, se aborda el diseño de detectores basados en inteligencia artificial como solución alternativa para la detección de blancos con parámetros desconocidos en diferentes entornos de clutter. En la literatura se ha demostrado la capacidad de aproximar el detector NP utilizando sistemas adaptativos entrenados de manera supervisada para minimizar la función de coste adecuada, y se ha calculado la función aproximada por agentes inteligentes, como los perceptrones multicapa (MLP), redes neuronales con funciones de base radial (RBFNN) y redes neuronales de segundo orden (SONN), entrenados con el error cuadrático medio o la entropía. En esta Tesis, este estudio teórico previo ha sido extendido para tests de hipótesis compuestos, confirmando que la condición suficiente puede ser aplicada para probar si un sistema adaptativo entrenado de manera supervisada con una función de error adecuada es capaz de aproximar el detector NP para cualquier par de funciones de verosimilitud. Otra contribución importante de la Tesis, es el estudio teórico de la función aproximada por una Máquina de Vectores Soporte (SVM) cuando en el entrenamiento se utiliza la función de error de clasificación convencional. Se trata de una contribución importante en este campo, porque aporta claves importantes para explicar, desde el punto de vista teórico, las limitaciones de las prestaciones de las C-SVM y 2C-SVM en diferentes aplicaciones de detección presentados en la literatura. Como esta Tesis se enmarca en proyectos financiados por el Ministerio de Ciencia e Innovación, la Comunidad de Madrid, la Universidad de Alcalá y la empresa AMPER SISTEMAS, S.A. centrados en aplicaciones de radares marinos, se han estudiado distintos modelos de clutter marino. Estos modelos se han utilizado para generar datos sintéticos para entrenar, validad y probar las soluciones basadas en inteligencia artificial y simular un escenario radar. Se han considerado tres casos de estudio: Detección de blancos fluctuantes Gaussianos con coeficientes de correlación o pulsación Doppler desconocida en ruido blanco Gaussiano aditivo; detección de blancos fluctuantes Gaussianos con coeficientes de correlación o pulsación Doppler desconocida en clutter Gaussiano correlado más ruido blanco Gaussiano aditivo; y detección de blancos no fluctuantes con pulsación Doppler desconocida en clutter K-distribuido impulsivo. Se ha realizado un estudio de la sensibilidad de los detectores LRT para blancos con parámetros desconocidos para todos los casos y se han diseñado aproximaciones basadas en el cociente de verosimilitud generalizado restringido (CGLR) para ser utilizadas como detectores de referencia para analizar las capacidades de detección y el coste computacional de las soluciones basadas en inteligencia artificial. Para cada uno de los casos de estudio, se han diseñado y evaluado detectores basados en MLPs, RBFNNs, SONNs y SVMs que presenten un buen compromiso entre capacidad de detección y coste computacional. La propuesta de soluciones basadas en SONNs es otra contribución importante de esta Tesis. Los detectores SONN, con una única unidad neuronal cuadrática, presentan una gran robustez frente al coeficiente de correlación o frecuencia Doppler del blanco en interferencia Gaussiana. También se proponen soluciones basadas en mezclas de expertos para mejorar las capacidades de detección y/o reducir el coste computacional. Se han propuesto diferentes técnicas novedosas de combinación de las salidas de los expertos. Las detectores propuestos han sido, finalmente, evaluados en un escenario radar simulado, cuyos resultados han sido comparados con los obtenidos con técnicas CA-CFAR

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Collaborative Information Processing in Wireless Sensor Networks for Diffusive Source Estimation

    Get PDF
    In this dissertation, we address the issue of collaborative information processing for diffusive source parameter estimation using wireless sensor networks (WSNs) capable of sensing in dispersive medium/environment, from signal processing perspective. We begin the dissertation by focusing on the mathematical formulation of a special diffusion phenomenon, i.e., an underwater oil spill, along with statistical algorithms for meaningful analysis of sensor data leading to efficient estimation of desired parameters of interest. The objective is to obtain an analytical solution to the problem, rather than using non-model based sophisticated numerical techniques. We tried to make the physical diffusion model as much appropriate as possible, while maintaining some pragmatic and reasonable assumptions for the simplicity of exposition and analytical derivation. The dissertation studies both source localization and tracking for static and moving diffusive sources respectively. For static diffusive source localization, we investigate two parametric estimation techniques based on the maximum-likelihood (ML) and the best linear unbiased estimator (BLUE) for a special case of our obtained physical dispersion model. We prove the consistency and asymptotic normality of the obtained ML solution when the number of sensor nodes and samples approach infinity, and derive the Cramer-Rao lower bound (CRLB) on its performance. In case of a moving diffusive source, we propose a particle filter (PF) based target tracking scheme for moving diffusive source, and analytically derive the posterior Cramer-Rao lower bound (PCRLB) for the moving source state estimates as a theoretical performance bound. Further, we explore nonparametric, machine learning based estimation technique for diffusive source parameter estimation using Dirichlet process mixture model (DPMM). Since real data are often complicated, no parametric model is suitable. As an alternative, we exploit the rich tools of nonparametric Bayesian methods, in particular the DPMM, which provides us with a flexible and data-driven estimation process. We propose DPMM based static diffusive source localization algorithm and provide analytical proof of convergence. The proposed algorithm is also extended to the scenario when multiple diffusive sources of same kind are present in the diffusive field of interest. Efficient power allocation can play an important role in extending the lifetime of a resource constrained WSN. Resource-constrained WSNs rely on collaborative signal and information processing for efficient handling of large volumes of data collected by the sensor nodes. In this dissertation, the problem of collaborative information processing for sequential parameter estimation in a WSN is formulated in a cooperative game-theoretic framework, which addresses the issue of fair resource allocation for estimation task at the Fusion center (FC). The framework allows addressing either resource allocation or commitment for information processing as solutions of cooperative games with underlying theoretical justifications. Different solution concepts found in cooperative games, namely, the Shapley function and Nash bargaining are used to enforce certain kinds of fairness among the nodes in a WSN

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography
    corecore