32 research outputs found

    Always-On 674uW @ 4GOP/s Error Resilient Binary Neural Networks with Aggressive SRAM Voltage Scaling on a 22nm IoT End-Node

    Full text link
    Binary Neural Networks (BNNs) have been shown to be robust to random bit-level noise, making aggressive voltage scaling attractive as a power-saving technique for both logic and SRAMs. In this work, we introduce the first fully programmable IoT end-node system-on-chip (SoC) capable of executing software-defined, hardware-accelerated BNNs at ultra-low voltage. Our SoC exploits a hybrid memory scheme where error-vulnerable SRAMs are complemented by reliable standard-cell memories to safely store critical data under aggressive voltage scaling. On a prototype in 22nm FDX technology, we demonstrate that both the logic and SRAM voltage can be dropped to 0.5Vwithout any accuracy penalty on a BNN trained for the CIFAR-10 dataset, improving energy efficiency by 2.2X w.r.t. nominal conditions. Furthermore, we show that the supply voltage can be dropped to 0.42V (50% of nominal) while keeping more than99% of the nominal accuracy (with a bit error rate ~1/1000). In this operating point, our prototype performs 4Gop/s (15.4Inference/s on the CIFAR-10 dataset) by computing up to 13binary ops per pJ, achieving 22.8 Inference/s/mW while keeping within a peak power envelope of 674uW - low enough to enable always-on operation in ultra-low power smart cameras, long-lifetime environmental sensors, and insect-sized pico-drones.Comment: Submitted to ISICAS2020 journal special issu

    Translating Timing into an Architecture: The Synergy of COTSon and HLS (Domain Expertise—Designing a Computer Architecture via HLS)

    Get PDF
    Translating a system requirement into a low-level representation (e.g., register transfer level or RTL) is the typical goal of the design of FPGA-based systems. However, the Design Space Exploration (DSE) needed to identify the final architecture may be time consuming, even when using high-level synthesis (HLS) tools. In this article, we illustrate our hybrid methodology, which uses a frontend for HLS so that the DSE is performed more rapidly by using a higher level abstraction, but without losing accuracy, thanks to the HP-Labs COTSon simulation infrastructure in combination with our DSE tools (MYDSE tools). In particular, this proposed methodology proved useful to achieve an appropriate design of a whole system in a shorter time than trying to design everything directly in HLS. Our motivating problem was to deploy a novel execution model called data-flow threads (DF-Threads) running on yet-to-be-designed hardware. For that goal, directly using the HLS was too premature in the design cycle. Therefore, a key point of our methodology consists in defining the first prototype in our simulation framework and gradually migrating the design into the Xilinx HLS after validating the key performance metrics of our novel system in the simulator. To explain this workflow, we first use a simple driving example consisting in the modelling of a two-way associative cache. Then, we explain how we generalized this methodology and describe the types of results that we were able to analyze in the AXIOM project, which helped us reduce the development time from months/weeks to days/hours

    Runtime adaptive iomt node on multi-core processor platform

    Get PDF
    The Internet of Medical Things (IoMT) paradigm is becoming mainstream in multiple clinical trials and healthcare procedures. Thanks to innovative technologies, latest-generation communication networks, and state-of-the-art portable devices, IoTM opens up new scenarios for data collection and continuous patient monitoring. Two very important aspects should be considered to make the most of this paradigm. For the first aspect, moving the processing task from the cloud to the edge leads to several advantages, such as responsiveness, portability, scalability, and reliability of the sensor node. For the second aspect, in order to increase the accuracy of the system, state-of-the-art cognitive algorithms based on artificial intelligence and deep learning must be integrated. Sensory nodes often need to be battery powered and need to remain active for a long time without a different power source. Therefore, one of the challenges to be addressed during the design and development of IoMT devices concerns energy optimization. Our work proposes an implementation of cognitive data analysis based on deep learning techniques on resource-constrained computing platform. To handle power efficiency, we introduced a component called Adaptive runtime Manager (ADAM). This component takes care of reconfiguring the hardware and software of the device dynamically during the execution, in order to better adapt it to the workload and the required operating mode. To test the high computational load on a multi-core system, the Orlando prototype board by STMicroelectronics, cognitive analysis of Electrocardiogram (ECG) traces have been adopted, considering single-channel and six-channel simultaneous cases. Experimental results show that by managing the sensory node configuration at runtime, energy savings of at least 15% can be achieved

    Translating Timing into an Architecture: The Synergy of COTSon and HLS (Domain Expertise: Designing a Computer Architecture via HLS)

    Get PDF
    Translating a system requirement into a low-level representation (e.g., register transfer level or RTL) is the typical goal of the design of FPGA-based systems. However, the Design Space Exploration (DSE) needed to identify the final architecture may be time consuming, even when using high-level synthesis (HLS) tools. In this article, we illustrate our hybrid methodology, which uses a frontend for HLS so that the DSE is performed more rapidly by using a higher level abstraction, but without losing accuracy, thanks to the HP-Labs COTSon simulation infrastructure in combination with our DSE tools (MYDSE tools). In particular, this proposed methodology proved useful to achieve an appropriate design of a whole system in a shorter time than trying to design everything directly in HLS. Our motivating problem was to deploy a novel execution model called data-flow threads (DF-Threads) running on yet-to-be-designed hardware. For that goal, directly using the HLS was too premature in the design cycle. Therefore, a key point of our methodology consists in defining the first prototype in our simulation framework and gradually migrating the design into the Xilinx HLS after validating the key performance metrics of our novel system in the simulator. To explain this workflow, we first use a simple driving example consisting in the modelling of a two-way associative cache. Then, we explain how we generalized this methodology and describe the types of results that we were able to analyze in the AXIOM project, which helped us reduce the development time from months/weeks to days/hours

    Design Space Exploration and Resource Management of Multi/Many-Core Systems

    Get PDF
    The increasing demand of processing a higher number of applications and related data on computing platforms has resulted in reliance on multi-/many-core chips as they facilitate parallel processing. However, there is a desire for these platforms to be energy-efficient and reliable, and they need to perform secure computations for the interest of the whole community. This book provides perspectives on the aforementioned aspects from leading researchers in terms of state-of-the-art contributions and upcoming trends

    AIUCD2018 - Book of Abstracts

    Get PDF
    Questo volume raccoglie gli abstract dei paper presentati al Settimo Convegno Annuale AIUCD 2018 (Bari, 31 gennaio – 2 febbraio 2018) dal titolo "Patrimoni culturali nell’era digitale. Memorie, culture umanistiche e tecnologia" (Cultural Heritage in the Digital Age. Memory, Humanities and Technologies). Gli abstract pubblicati in questo volume hanno ottenuto il parere favorevole da parte di valutatori esperti della materia, attraverso un processo di revisione anonima mediante double-blind peer review sotto la responsabilità del Comitato Scientifico di AIUCD. Il programma della conferenza AIUCD 2018 è disponibile online all'indirizzo http://www.aiucd2018.uniba.it/

    AIUCD2018 - Book of Abstracts

    Get PDF
    Questo volume raccoglie gli abstract dei paper presentati al Settimo Convegno Annuale AIUCD 2018 (Bari, 31 gennaio – 2 febbraio 2018) dal titolo "Patrimoni culturali nell’era digitale. Memorie, culture umanistiche e tecnologia" (Cultural Heritage in the Digital Age. Memory, Humanities and Technologies). Gli abstract pubblicati in questo volume hanno ottenuto il parere favorevole da parte di valutatori esperti della materia, attraverso un processo di revisione anonima mediante double-blind peer review sotto la responsabilità del Comitato Scientifico di AIUCD. Il programma della conferenza AIUCD 2018 è disponibile online all'indirizzo http://www.aiucd2018.uniba.it/
    corecore