21 research outputs found

    Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications

    Full text link
    [EN] In areas with limited infrastructure, Unmanned Aerial Vehicles (UAVs) can come in handy as relays for car-to-car communications. Since UAVs are able to fully explore a three-dimensional environment while flying, communications that involve them can be affected by the irregularity of the terrains, that in turn can cause path loss by acting as obstacles. Accounting for this phenomenon, we propose a UAV positioning technique that relies on optimization algorithms to improve the support for vehicular communications. Simulation results show that the best position of the UAV can be timely determined considering the dynamic movement of the cars. Our technique takes into account the current flight altitude, the position of the cars on the ground, and the existing flight restrictions.This work was partially supported by the Ministerio de Ciencia, Innovación y Universidades, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018 , Spain, under Grant RTI2018-096384-B-I00, and grant BES-2015-075988, Ayudas para contratos predoctorales 2015.Hadiwardoyo, SA.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Krinkin, K.; Klionskiy, D.; Hernández-Orallo, E.; Manzoni, P. (2020). Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications. Sensors. 20(2):1-18. https://doi.org/10.3390/s20020356S11820

    Misconfiguration in Firewalls and Network Access Controls: Literature Review

    Get PDF
    Firewalls and network access controls play important roles in security control and protection. Those firewalls may create an incorrect sense or state of protection if they are improperly configured. One of the major configuration problems in firewalls is related to misconfiguration in the access control roles added to the firewall that will control network traffic. In this paper, we evaluated recent research trends and open challenges related to firewalls and access controls in general and misconfiguration problems in particular. With the recent advances in next-generation (NG) firewalls, firewall roles can be auto-generated based on networks and threats. Nonetheless, and due to the large number of roles in any medium to large networks, roles’ misconfiguration may occur for several reasons and will impact the performance of the firewall and overall network and protection efficiency

    A review of flow conflicts and solutions in software defined networks (SDN)

    Get PDF
    Software Defined Networks (SDN) are a modern networking technology introduced to simplify network management via the separation of the data and control planes. Characteristically, flow entries are propagated between the control plane layer and application or data plane layers respectively while following flow table instructions through an OpenFlow protocol. More often than not, conflicts in flows occur as a result of traffic load and priority of instructions in the data plane. Several research works have been conducted on flow conflicts in SDN to reduce their adverse effect. Solutions to flow conflict in SDN have three main limitations. First, the OpenFlow table may still cause a defect in the security module according to the priority and action matching in the OpenFlow of the control plane. Second, flow conflict detection requires more time due to flow tracking and incremental update, whereas in such a case, delay affects the efficiency of SDN. Besides, the SDN algorithm and mechanism have substantially high memory requirement for instruction and proper functioning. Third, most of the available algorithms and detection methods used to avoid flow conflicts have not fully covered the security model policy. This study reviews these limitations and suggest solutions for future research directions

    Seiðr: Dataplane Assisted Flow Classification Using ML

    Get PDF
    Real-time, high-speed flow classification is fundamental for network operation tasks, including reactive and proactive traffic engineering, anomaly detection and security enhancement. Existing flow classification solutions, however, do not allow operators to classify traffic based on fine-grained, temporal dynamics due to imprecise timing, often rely on sampled data, or only work with low traffic volumes and rates. In this paper, we present Seiðr, a classification solution that: (i) uses precision timing, (ii) has the ability to examine every packet on the network, (iii) classifies very high traffic volumes with high precision. To achieve this, Seiðr exploits the data aggregation and timestamping functionality of programmable dataplanes. As a concrete example, we present how Seiðr can be used together with Machine Learning algorithms (such as CNN, k -NN) to provide accurate, real-time and high-speed TCP congestion control classification, separating TCP BBR from its predecessors with over 88–96% accuracy and F1-score of 0.864-0.965, while only using 15.5 MiB of memory in the dataplane

    LEVERAGING PEER-TO-PEER ENERGY SHARING FOR RESOURCE OPTIMIZATION IN MOBILE SOCIAL NETWORKS

    Get PDF
    Mobile Opportunistic Networks (MSNs) enable the interaction of mobile users in the vicinity through various short-range wireless communication technologies (e.g., Bluetooth, WiFi) and let them discover and exchange information directly or in ad hoc manner. Despite their promise to enable many exciting applications, limited battery capacity of mobile devices has become the biggest impediment to these appli- cations. The recent breakthroughs in the areas of wireless power transfer (WPT) and rechargeable lithium batteries promise the use of peer-to-peer (P2P) energy sharing (i.e., the transfer of energy from the battery of one member of the mobile network to the battery of the another member) for the efficient utilization of scarce energy resources in the network. However, due to uncertain mobility and communication opportunities in the network, resource optimization in these opportunistic networks is very challenging. In this dissertation, we study energy utilization in three different applications in Mobile Social Networks and target to improve the energy efficiency in the network by benefiting from P2P energy sharing among the nodes. More specifi- xi cally, we look at the problems of (i) optimal energy usage and sharing between friendly nodes in order to reduce the burden of wall-based charging, (ii) optimal content and energy sharing when energy is considered as an incentive for carrying the content for other nodes, and (iii) energy balancing among nodes for prolonging the network lifetime. We have proposed various novel protocols for the corresponding applications and have shown that they outperform the state-of-the-art solutions and improve the energy efficiency in MSNs while the application requirements are satisfied

    Building a green connected future: smart (Internet of) Things for smart networks

    Get PDF
    The vision of Internet of Things (IoT) promises to reshape society by creating a future where we will be surrounded by a smart environment that is constantly aware of the users and has the ability to adapt to any changes. In the IoT, a huge variety of smart devices is interconnected to form a network of distributed agents that continuously share and process information. This communication paradigm has been recognized as one of the key enablers of the rapidly emerging applications that make up the fabric of the IoT. These networks, often called wireless sensor networks (WSNs), are characterized by the low cost of their components, their pervasive connectivity, and their self-organization features, which allow them to cooperate with other IoT elements to create large-scale heterogeneous information systems. However, a number of considerable challenges is arising when considering the design of large-scale WSNs. In particular, these networks are made up by embedded devices that suffer from severe power constraints and limited resources. The advent of low-power sensor nodes coupled with intelligent software and hardware technologies has led to the era of green wireless networks. From the hardware perspective, green sensor nodes are endowed with energy scavenging capabilities to overcome energy-related limitations. They are also endowed with low-power triggering techniques, i.e., wake-up radios, to eliminate idle listening-induced communication costs. Green wireless networks are considered a fundamental vehicle for enabling all those critical IoT applications where devices, for different reasons, do not carry batteries, and that therefore only harvest energy and store it for future use. These networks are considered to have the potential of infinite lifetime since they do not depend on batteries, or on any other limited power sources. Wake-up radios, coupled with energy provisioning techniques, further assist on overcoming the physical constraints of traditional WSNs. In addition, they are particularly important in green WSNs scenarios in which it is difficult to achieve energy neutrality due to limited harvesting rates. In this PhD thesis we set to investigate how different data forwarding mechanisms can make the most of these green wireless networks-enabling technologies, namely, energy harvesting and wake-up radios. Specifically, we present a number of cross-layer routing approaches with different forwarding design choices and study their consequences on network performance. Among the most promising protocol design techniques, the past decade has shown the increasingly intensive adoption of techniques based on various forms of machine learning to increase and optimize the performance of WSNs. However, learning techniques can suffer from high computational costs as nodes drain a considerable percentage of their energy budget to run sophisticated software procedures, predict accurate information and determine optimal decision. This thesis addresses also the problem of local computational requirements of learning-based data forwarding strategies by investigating their impact on the performance of the network. Results indicate that local computation can be a major source of energy consumption; it’s impact on network performance should not be neglected

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things
    corecore