24 research outputs found

    Secure Decentralized IoT Service Platform using Consortium Blockchain

    Full text link
    Blockchain technology has gained increasing popularity in the research of Internet of Things (IoT) systems in the past decade. As a distributed and immutable ledger secured by strong cryptography algorithms, the blockchain brings a new perspective to secure IoT systems. Many studies have been devoted to integrating blockchain into IoT device management, access control, data integrity, security, and privacy. In comparison, the blockchain-facilitated IoT communication is much less studied. Nonetheless, we see the potential of blockchain in decentralizing and securing IoT communications. This paper proposes an innovative IoT service platform powered by consortium blockchain technology. The presented solution abstracts machine-to-machine (M2M) and human-to-machine (H2M) communications into services provided by IoT devices. Then, it materializes data exchange of the IoT network through smart contracts and blockchain transactions. Additionally, we introduce the auxiliary storage layer to the proposed platform to address various data storage requirements. Our proof-of-concept implementation is tested against various workloads and connection sizes under different block configurations to evaluate the platform's transaction throughput, latency, and hardware utilization. The experiment results demonstrate that our solution can maintain high performance under most testing scenarios and provide valuable insights on optimizing the blockchain configuration to achieve the best performance

    Cybersecurity in Power Grids: Challenges and Opportunities

    Get PDF
    Increasing volatilities within power transmission and distribution force power grid operators to amplify their use of communication infrastructure to monitor and control their grid. The resulting increase in communication creates a larger attack surface for malicious actors. Indeed, cyber attacks on power grids have already succeeded in causing temporary, large-scale blackouts in the recent past. In this paper, we analyze the communication infrastructure of power grids to derive resulting fundamental challenges of power grids with respect to cybersecurity. Based on these challenges, we identify a broad set of resulting attack vectors and attack scenarios that threaten the security of power grids. To address these challenges, we propose to rely on a defense-in-depth strategy, which encompasses measures for (i) device and application security, (ii) network security, and (iii) physical security, as well as (iv) policies, procedures, and awareness. For each of these categories, we distill and discuss a comprehensive set of state-of-the art approaches, as well as identify further opportunities to strengthen cybersecurity in interconnected power grids

    LoRaWAN Physical Layer-Based Attacks and Countermeasures, A Review

    Get PDF
    As LoRaWAN is one of the most popular long-range wireless protocols among low-power IoT applications, more and more focus is shifting towards security. In particular, physical layer topics become relevant to improve the security of LoRaWAN nodes, which are often limited in terms of computational power and communication resources. To this end, e.g., detection methods for wireless attacks improve the integrity and robustness of LoRaWAN access. Further, wireless physical layer techniques have potential to enhance key refreshment and device authentication. In this work, we aim to provide a comprehensive review of various vulnerabilities, countermeasures and security enhancing features concerning the LoRaWAN physical layer. Afterwards, we discuss the impact of the reviewed topics on LoRaWAN security and, subsequently, we identify research gaps as well as promising future research directions

    From classical to quantum machine learning: survey on routing optimization in 6G software defined networking

    Get PDF
    The sixth generation (6G) of mobile networks will adopt on-demand self-reconfiguration to fulfill simultaneously stringent key performance indicators and overall optimization of usage of network resources. Such dynamic and flexible network management is made possible by Software Defined Networking (SDN) with a global view of the network, centralized control, and adaptable forwarding rules. Because of the complexity of 6G networks, Artificial Intelligence and its integration with SDN and Quantum Computing are considered prospective solutions to hard problems such as optimized routing in highly dynamic and complex networks. The main contribution of this survey is to present an in-depth study and analysis of recent research on the application of Reinforcement Learning (RL), Deep Reinforcement Learning (DRL), and Quantum Machine Learning (QML) techniques to address SDN routing challenges in 6G networks. Furthermore, the paper identifies and discusses open research questions in this domain. In summary, we conclude that there is a significant shift toward employing RL/DRL-based routing strategies in SDN networks, particularly over the past 3 years. Moreover, there is a huge interest in integrating QML techniques to tackle the complexity of routing in 6G networks. However, considerable work remains to be done in both approaches in order to accomplish thorough comparisons and synergies among various approaches and conduct meaningful evaluations using open datasets and different topologies

    On the use of intelligent models towards meeting the challenges of the edge mesh

    Get PDF
    Nowadays, we are witnessing the advent of the Internet of Things (IoT) with numerous devices performing interactions between them or with their environment. The huge number of devices leads to huge volumes of data that demand the appropriate processing. The “legacy” approach is to rely on Cloud where increased computational resources can realize any desired processing. However, the need for supporting real-time applications requires a reduced latency in the provision of outcomes. Edge Computing (EC) comes as the “solver” of the latency problem. Various processing activities can be performed at EC nodes having direct connection with IoT devices. A number of challenges should be met before we conclude a fully automated ecosystem where nodes can cooperate or understand their status to efficiently serve applications. In this article, we perform a survey of the relevant research activities towards the vision of Edge Mesh (EM), i.e., a “cover” of intelligence upon the EC. We present the necessary hardware and discuss research outcomes in every aspect of EC/EM nodes functioning. We present technologies and theories adopted for data, tasks, and resource management while discussing how machine learning and optimization can be adopted in the domain

    Towards Secure Fog Computing: A Survey on Trust Management, Privacy, Authentication, Threats and Access Control

    Get PDF
    Fog computing is an emerging computing paradigm that has come into consideration for the deployment of Internet of Things (IoT) applications amongst researchers and technology industries over the last few years. Fog is highly distributed and consists of a wide number of autonomous end devices, which contribute to the processing. However, the variety of devices offered across different users are not audited. Hence, the security of Fog devices is a major concern that should come into consideration. Therefore, to provide the necessary security for Fog devices, there is a need to understand what the security concerns are with regards to Fog. All aspects of Fog security, which have not been covered by other literature works, need to be identified and aggregated. On the other hand, privacy preservation for user’s data in Fog devices and application data processed in Fog devices is another concern. To provide the appropriate level of trust and privacy, there is a need to focus on authentication, threats and access control mechanisms as well as privacy protection techniques in Fog computing. In this paper, a survey along with a taxonomy is proposed, which presents an overview of existing security concerns in the context of the Fog computing paradigm. Moreover, the Blockchain-based solutions towards a secure Fog computing environment is presented and various research challenges and directions for future research are discussed

    Foundations for practical network verification

    Get PDF
    Computer networks are large and complex and the often manual process of configuring such systems is error-prone, leading to network outages and breaches. This has ignited research into network verification tools that given a set of operator intents, automatically check whether the configured network satisfies the intents. In this dissertation, we argue that existing works in this area have important limitations that prevent their widespread adoption in the real world. We set to address these limitations by revisiting the main aspects of network verification: verification framework, intent specification, and network modeling. First, we develop #PEC, a symbolic packet header analysis framework that resolves the tension between expressiveness and efficiency in previous works. We provide an extensible library of efficient match-types that allows encoding and analyzing more types of forwarding rules (e.g. Linux iptables) compared to most previous works. Similar to the state-of-the-art, #PEC partitions the space of packet headers into a set of equivalence classes (PECs) before the analysis. However, it uses a lattice-based approach to do so, refraining from using computationally expensive negation and subtraction operations. Our experiments with a broad range of real-world datasets show that #PEC is 10× faster than similarly expressive state-of-the-art. We also demonstrate how empty PECs in previous works lead to unsound/incomplete analysis and develop a counting-based method to eliminate empty PECs from #PEC that outperforms baseline approaches by 10 − 100×. Next, we note that network verification requires formal specifications of the intents of the network operator as a starting point, which are almost never available or even known in a complete form. We mitigate this problem by providing a framework to utilize existing low-level network behavior to infer the high-level intents. We design Anime, a system that given observed packet forwarding behavior, mines a compact set of possible intents that best describe the observations. Anime accomplishes this by applying optimized clustering algorithms to a set of observed network paths, encoded using path features with hierarchical values that yield a way to control the precision-recall tradeoff. The resulting inferred intents can be used as input to verification/synthesis tools for continued maintenance. They can also be viewed as a summary of network behavior, and as a way to find anomalous behavior. Our experiments, including data from an operational network, demonstrate that Anime produces higher quality (F-score) intents than past work, can generate compact summaries with minimal loss of precision, is resilient to imperfect input and policy changes, scales to large networks, and finds actionable anomalies in an operational network. Finally, we turn our attention to modeling networking devices. We envision basing data plane analysis on P4 as the modeling language. Unlike most tools, we believe P4 analysis must be based on a precise model of the language rather than its informal specification. To this end, we develop a formal operational semantics of the P4 language during the process of which we have identified numerous issues with the design of the language. We then provide a suite of formal analysis tools derived directly from our semantics including an interpreter, a symbolic model checker, a deductive program verifier, and a program equivalence checker. Through a set of case studies, we demonstrate the use of our semantics beyond just a reference model for the language. This includes applications for the detection of unportable code, state-space exploration, search for bugs, full functional verification, and compiler translation validation

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore