369 research outputs found

    Undermining User Privacy on Mobile Devices Using AI

    Full text link
    Over the past years, literature has shown that attacks exploiting the microarchitecture of modern processors pose a serious threat to the privacy of mobile phone users. This is because applications leave distinct footprints in the processor, which can be used by malware to infer user activities. In this work, we show that these inference attacks are considerably more practical when combined with advanced AI techniques. In particular, we focus on profiling the activity in the last-level cache (LLC) of ARM processors. We employ a simple Prime+Probe based monitoring technique to obtain cache traces, which we classify with Deep Learning methods including Convolutional Neural Networks. We demonstrate our approach on an off-the-shelf Android phone by launching a successful attack from an unprivileged, zeropermission App in well under a minute. The App thereby detects running applications with an accuracy of 98% and reveals opened websites and streaming videos by monitoring the LLC for at most 6 seconds. This is possible, since Deep Learning compensates measurement disturbances stemming from the inherently noisy LLC monitoring and unfavorable cache characteristics such as random line replacement policies. In summary, our results show that thanks to advanced AI techniques, inference attacks are becoming alarmingly easy to implement and execute in practice. This once more calls for countermeasures that confine microarchitectural leakage and protect mobile phone applications, especially those valuing the privacy of their users

    A hard lesson: Assessing the HTTPS deployment of Italian university websites

    Get PDF
    In this paper we carry out a systematic analysis of the state of the HTTPS deployment of the most popular Italian university websites. Our analysis focuses on three different key aspects: HTTPS adoption and activation, HTTPS certificates, and cryptographic TLS implementations. Our investigation shows that the current state of the HTTPS deployment is unsatisfactory, yet it is possible to significantly improve the level of security by working exclusively at the web application layer. We hope this observation will encourage site operators to take actions to improve the current state of protection

    Strongly Secure and Efficient Data Shuffle On Hardware Enclaves

    Full text link
    Mitigating memory-access attacks on the Intel SGX architecture is an important and open research problem. A natural notion of the mitigation is cache-miss obliviousness which requires the cache-misses emitted during an enclave execution are oblivious to sensitive data. This work realizes the cache-miss obliviousness for the computation of data shuffling. The proposed approach is to software-engineer the oblivious algorithm of Melbourne shuffle on the Intel SGX/TSX architecture, where the Transaction Synchronization eXtension (TSX) is (ab)used to detect the occurrence of cache misses. In the system building, we propose software techniques to prefetch memory data prior to the TSX transaction to defend the physical bus-tapping attacks. Our evaluation based on real implementation shows that our system achieves superior performance and lower transaction abort rate than the related work in the existing literature.Comment: Systex'1

    Triggerflow: Regression Testing by Advanced Execution Path Inspection

    Get PDF
    Cryptographic libraries often feature multiple implementations of primitives to meet both the security needs of handling private information and the performance requirements of modern services when the handled information is public. OpenSSL, the de-facto standard free and open source cryptographic library, includes mechanisms to differentiate the confidential data and its control flow, including runtime flags, designed for hardening against timing side-channels, but repeatedly accidentally mishandled in the past. To analyze and prevent these accidents, we introduce Triggerflow, a tool for tracking execution paths that, assisted by source annotations, dynamically analyzes the binary through the debugger. We validate this approach with case studies demonstrating how adopting our method in the development pipeline would have promptly detected such accidents. We further show-case the value of the tooling by presenting two novel discoveries facilitated by Triggerflow: one leak and one defect
    corecore