15 research outputs found

    Message from the IWPD 2014 workshop organizers

    Get PDF
    postprin

    Mutation Testing Advances: An Analysis and Survey

    Get PDF

    Indefinite waitings in MIRELA systems

    Get PDF
    MIRELA is a high-level language and a rapid prototyping framework dedicated to systems where virtual and digital objects coexist in the same environment and interact in real time. Its semantics is given in the form of networks of timed automata, which can be checked using symbolic methods. This paper shows how to detect various kinds of indefinite waitings in the components of such systems. The method is experimented using the PRISM model checker.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Vérification interactive de propriétés à l'exécution d'un programme avec un débogueur

    Get PDF
    National audienceLe monitoring est l'étude d'un système pendant son exécution, en surveillant les évènements qui y entrent et qui en sortent, afin de découvrir, vérifier ou pour faire respecter des propriétés à l'exécution. Le débogage est l'étude d'un système pendant son exécution afin de trouver et comprendre ses dysfonctionnements dans le but de les corriger, en inspectant son état interne, de manière interactive. Dans ce papier, nous combinons le monitoring et le débogage en définissant un moyen efficace et pratique de vérifier automatiquement des propriétés à l'exécution d'un programme à l'aide d'un débogueur afin d'aider à détecter des anomalies dans son code, en conservant le caractère interactif du débogage classique

    Automated pairwise testing approach based on classification tree modeling and negative selection algorithm

    Get PDF
    Generating the test cases for analysis is an important activity in software testing to increase the trust level of users. The traditional way to generate test cases is called exhaustive testing. It is infeasible and time consuming because it generates too many numbers of test cases. A combinatorial testing was used to solve the exhaustive testing problem. The popular technique in combinatorial testing is called pairwise testing that involves the interaction of two parameters. Although pairwise testing can cover the exhaustive testing problems, there are several issues that should be considered. First issue is related to modeling of the system under test (SUT) as a preprocess for test case generation as it has yet to be implemented in automated proposed approaches. The second issue is different approaches generate different number of test cases for different covering arrays. These issues showed that there is no one efficient way to find the optimal solution in pairwise testing that would consider the invalid combination or constraint. Therefore, a combination of Classification Tree Method and Negative Selection Algorithm (CTM-NSA) was developed in this research. The CTM approach was revised and enhanced to be used as the automated modeling and NSA approach was developed to optimize the pairwise testing by generate the low number of test cases. The findings showed that the CTM-NSA outperformed the other modeling method in terms of easing the tester and generating a low number of test cases in the small SUT size. Furthermore, it is comparable to the efficient approaches as compared to many of the test case generation approaches in large SUT size as it has good characteristic in detecting the self and non-self-sample. This characteristic occurs during the detection stage of NSA by covering the best combination of values for all parameters and considers the invalid combinations or constraints in order to achieve a hundred percent pairwise testing coverage. In addition, validation of the approach was performed using Statistical Wilcoxon Signed-Rank Test. Based on these findings, CTM-NSA had been shown to be able perform modeling in an automated way and achieve the minimum or a low number of test cases in small SUT size

    Personalizing the web: A tool for empowering end-users to customize the web through browser-side modification

    Get PDF
    167 p.Web applications delegate to the browser the final rendering of their pages. Thispermits browser-based transcoding (a.k.a. Web Augmentation) that can be ultimately singularized for eachbrowser installation. This creates an opportunity for Web consumers to customize their Web experiences.This vision requires provisioning adequate tooling that makes Web Augmentation affordable to laymen.We consider this a special class of End-User Development, integrating Web Augmentation paradigms.The dominant paradigm in End-User Development is scripting languages through visual languages.This thesis advocates for a Google Chrome browser extension for Web Augmentation. This is carried outthrough WebMakeup, a visual DSL programming tool for end-users to customize their own websites.WebMakeup removes, moves and adds web nodes from different web pages in order to avoid tabswitching, scrolling, the number of clicks and cutting and pasting. Moreover, Web Augmentationextensions has difficulties in finding web elements after a website updating. As a consequence, browserextensions give up working and users might stop using these extensions. This is why two differentlocators have been implemented with the aim of improving web locator robustness

    2014-2015 UGR Bibliography of CCU Student Research

    Get PDF
    corecore