363 research outputs found

    The differential diagnosis of Huntington's disease-like syndromes: 'red flags' for the clinician

    Get PDF
    A growing number of progressive heredodegenerative conditions mimic the presentation of Huntington's disease (HD). Differentiating among these HD-like syndromes is necessary when a patient with a combination of movement disorders, cognitive decline, behavioural abnormalities and progressive disease course proves negative to the genetic testing for HD causative mutations, that is, IT15 gene trinucleotide-repeat expansion. The differential diagnosis of HD-like syndromes is complex and may lead to unnecessary and costly investigations. We propose here a guide to this differential diagnosis focusing on a limited number of clinical features (‘red flags’) that can be identified through accurate clinical examination, collection of historical data and a few routine ancillary investigations. These features include the ethnic background of the patient, the involvement of the facio-bucco-lingual and cervical district by the movement disorder, the co-occurrence of cerebellar features and seizures, the presence of peculiar gait patterns and eye movement abnormalities, and an atypical progression of illness. Additional help may derive from the cognitive–behavioural presentation of the patient, as well as by a restricted number of ancillary investigations, mainly MRI and routine blood tests. These red flags should be constantly updated as the phenotypic characterisation and identification of more reliable diagnostic markers for HD-like syndromes progress over the following years

    Insights into molecular mechanisms of disease in Neurodegeneration with Brain Iron Accumulation; unifying theories.

    Get PDF
    Neurodegeneration with brain iron accumulation (NBIA) is a group of disorders characterised by dystonia, parkinsonism and spasticity. Iron accumulates in the basal ganglia and may be accompanied by Lewy bodies, axonal swellings and hyperphosphorylated tau depending on NBIA subtype. Mutations in 10 genes have been associated with NBIA that include Ceruloplasmin (Cp) and Ferritin Light Chain (FTL), both directly involved in iron homeostasis, as well as Pantothenate Kinase 2 (PANK2), Phospholipase A2 group 6 (PLA2G6), Fatty acid hydroxylase 2 (FA2H), Coenzyme A synthase (COASY), C19orf12, WDR45 and DCAF17 (C2orf37). These genes are involved in seemingly unrelated cellular pathways, such as lipid metabolism, Coenzyme A synthesis and autophagy. A greater understanding of the cellular pathways that link these genes and the disease mechanisms leading to iron dyshomeostasis is needed. Additionally, the major overlap seen between NBIA and more common neurodegenerative diseases may highlight conserved disease processes. In this review, we will discuss clinical and pathological findings for each NBIA-related gene, discuss proposed disease mechanisms such as mitochondrial health, oxidative damage, autophagy/mitophagy and iron homeostasis and speculate potential overlap between NBIA subtypes

    Diagnostic and clinical experience of patients with pantothenate kinase-associated neurodegeneration

    Get PDF
    BACKGROUND: Pantothenate kinase-associated neurodegeneration (PKAN) is an autosomal recessive neurodegenerative disorder with brain iron accumulation (NBIA). OBJECTIVES: To assess PKAN diagnostic pathway, history, and burden across the spectrum of PKAN severity from patient and/or caregiver perspectives. METHODS: Caregivers of patients (n = 37) and patients themselves (n = 2) were interviewed in a validation study of the PKAN-Activities of Daily Living (ADL) scale. The current study used quartiles of the PKAN-ADL total score to divide patients by severity of impairment (Lowest, Second Lowest, Third Lowest, Highest). Diagnostic and treatment history, healthcare utilization, disease burden, and caregiver experience were compared between groups. RESULTS: The analyses included data from 39 patients. Mean age at PKAN symptom onset (P = 0.0007), initial MRI (P = 0.0150), and genetic testing (P = 0.0016) generally decreased across the PKAN severity spectrum. The mean duration of illness did not differ among PKAN severity groups (range, 9.7-15.2 years; P = 0.3029). First MRI led to diagnosis in 56.4% of patients (range, 30.0-90.0%). A mean (SD) of 13.0 (13.1) medical and 55.2 (78.5) therapy visits (eg, physical, speech) occurred in the past year. More patients in the higher PKAN severity groups experienced multiple current functional losses and/or earlier onset of problems (P-values \u3c 0.0500). Over half (56.8%) of caregivers experienced a change in employment because of caregiving. The percentage of patients requiring full-time caregiving increased across the PKAN severity spectrum (range, 11.1-100%; P = 0.0021). CONCLUSIONS: PKAN diagnosis was often delayed, most probably due to low awareness. Considerable burden of functional impairment and high healthcare utilization were found across the PKAN severity spectrum

    Patient and caregiver experiences with pantothenate kinase-associated neurodegeneration (PKAN): results from a patient community survey

    Get PDF
    Dystonia; Iron accumulation; NeurodegenerationDistonía; Acumulación de hierro; NeurodegeneraciónDistonia; Acumulació de ferro; NeurodegeneracióBackground Pantothenate kinase-associated neurodegeneration (PKAN) is a rare autosomal recessive genetic disorder of PANK2, which enables mitochondrial synthesis of coenzyme A. Its loss causes neurodegeneration with iron accumulation primarily in motor-related brain areas. Symptoms include dystonia, parkinsonism, and other disabilities. PKAN has been categorized as classic PKAN, with an age of onset ≤ 10 years, rapid progression, and early disability or death; and atypical PKAN, with later onset, slower progression, generally milder, and more diverse symptom manifestations. Available treatments are mostly palliative. Information on the lived experience of patients with PKAN and their caregivers or on community-level disease burden is limited. It is necessary to engage patients as partners to expand our understanding and improve clinical outcomes. This patient-oriented research study used multiple-choice and free-form question surveys distributed by patient organizations to collect information on the manifestations and disease burden of PKAN. It also assessed respondents’ experiences and preferences with clinical research to inform future clinical trials. Results The analysis included 166 surveys. Most respondents (87%) were parents of a patient with PKAN and 7% were patients, with 80% from Europe and North America. The study cohort included 85 patients with classic PKAN (mean ± SD age of onset 4.4 ± 2.79 years), 65 with atypical PKAN (13.8 ± 4.79 years), and 16 identified as “not sure”. Respondents reported gait disturbances and dystonia most often in both groups, with 44% unable to walk. The classic PKAN group reported more speech, swallowing, and visual difficulties and more severe motor problems than the atypical PKAN group. Dystonia and speech/swallowing difficulties were reported as the most challenging symptoms. Most respondents reported using multiple medications, primarily anticonvulsants and antiparkinsonian drugs, and about half had participated in a clinical research study. Study participants reported the most difficulties with the physical exertion associated with imaging assessments and travel to assessment sites. Conclusions The survey results support the dichotomy between classic and atypical PKAN that extends beyond the age of onset. Inclusion of patients as clinical research partners shows promise as a pathway to improving clinical trials and providing more efficacious PKAN therapies.This study was sponsored by CoA Therapeutics

    iPSC-derived neuronal models of PANK2-associated neurodegeneration reveal mitochondrial dysfunction contributing to early disease

    Get PDF
    Mutations in PANK2 lead to neurodegeneration with brain iron accumulation. PANK2 has a role in the biosynthesis of coenzyme A (CoA) from dietary vitamin B5, but the neuropathological mechanism and reasons for iron accumulation remain unknown. In this study, atypical patient-derived fibroblasts were reprogrammed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into cortical neuronal cells for studying disease mechanisms in human neurons. We observed no changes in PANK2 expression between control and patient cells, but a reduction in protein levels was apparent in patient cells. CoA homeostasis and cellular iron handling were normal, mitochondrial function was affected; displaying activated NADH-related and inhibited FADH-related respiration, resulting in increased mitochondrial membrane potential. This led to increased reactive oxygen species generation and lipid peroxidation in patient-derived neurons. These data suggest that mitochondrial deficiency is an early feature of the disease process and can be explained by altered NADH/FADH substrate supply to oxidative phosphorylation. Intriguingly, iron chelation appeared to exacerbate the mitochondrial phenotype in both control and patient neuronal cells. This raises caution for the use iron chelation therapy in general when iron accumulation is absent

    Fosmetpantotenate Randomized Controlled Trial in Pantothenate Kinase–Associated Neurodegeneration

    Get PDF
    Fosmetpantotenate; Randomized controlled trialFosmetpantotenato; Ensayo controlado aleatorizadoFosmetpantotenat; Assaig controlat aleatoritzatBackground Pantothenate kinase–associated neurodegeneration (PKAN) currently has no approved treatments. Objectives The Fosmetpantotenate Replacement Therapy pivotal trial examined whether treatment with fosmetpantotenate improves PKAN symptoms and stabilizes disease progression. Methods This randomized, double-blind, placebo-controlled, multicenter study evaluated fosmetpantotenate, 300 mg oral dose three times daily, versus placebo over a 24-week double-blind period. Patients with pathogenic variants of PANK2, aged 6 to 65 years, with a score ≥6 on the PKAN-Activities of Daily Living (PKAN-ADL) scale were enrolled. Patients were randomized to active (fosmetpantotenate) or placebo treatment, stratified by weight and age. The primary efficacy endpoint was change from baseline at week 24 in PKAN-ADL. Results Between July 23, 2017, and December 18, 2018, 84 patients were randomized (fosmetpantotenate: n = 41; placebo: n = 43); all 84 patients were included in the analyses. Six patients in the placebo group discontinued treatment; two had worsening dystonia, two had poor compliance, and two died of PKAN-related complications (aspiration during feeding and disease progression with respiratory failure, respectively). Fosmetpantotenate and placebo group PKAN-ADL mean (standard deviation) scores were 28.2 (11.4) and 27.4 (11.5) at baseline, respectively, and were 26.9 (12.5) and 24.5 (11.8) at week 24, respectively. The difference in least square mean (95% confidence interval) at week 24 between fosmetpantotenate and placebo was −0.09 (−1.69 to 1.51; P = 0.9115). The overall incidence of treatment-emergent serious adverse events was similar in the fosmetpantotenate (8/41; 19.5%) and placebo (6/43; 14.0%) groups. Conclusions Treatment with fosmetpantotenate was safe but did not improve function assessed by the PKAN-ADL in patients with PKAN.The FORT trial was supported by Retrophin, Inc

    Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation

    Get PDF
    Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurologic disorders in which iron accumulates in the basal ganglia resulting in progressive dystonia, spasticity, parkinsonism, neuropsychiatric abnormalities, and optic atrophy or retinal degeneration. The most prevalent form of NBIA is pantothenate kinase-associated neurodegeneration (PKAN) associated with mutations in the gene of pantothenate kinase 2 (PANK2), which is essential for coenzyme A (CoA) synthesis. There is no cure for NBIA nor is there a standard course of treatment. In the current work, we describe that fibroblasts derived from patients harbouring PANK2 mutations can reproduce many of the cellular pathological alterations found in the disease, such as intracellular iron and lipofuscin accumulation, increased oxidative stress, and mitochondrial dysfunction. Furthermore, mutant fibroblasts showed a characteristic senescent morphology. Treatment with pantothenate, the PANK2 enzyme substrate, was able to correct all pathological alterations in responder mutant fibroblasts with residual PANK2 enzyme expression. However, pantothenate had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of pantothenate in particular mutations was also confirmed in induced neurons obtained by direct reprograming of mutant fibroblasts. Our results suggest that pantothenate treatment can stabilize the expression levels of PANK2 in selected mutations. These results encourage us to propose our screening model as a quick and easy way to detect pantothenate-responder patients with PANK2 mutations. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of pantothenate.Instituto de Salud Carlos III FIS PI16/00786Junta de Andalucía CTS-5725, BIO-122Dirección General de Investigación Científica y Técnica BFU2015-64536-

    Neuroacanthocytosis Syndromes

    Get PDF
    Neuroacanthocytosis (NA) syndromes are a group of genetically defined diseases characterized by the association of red blood cell acanthocytosis and progressive degeneration of the basal ganglia. NA syndromes are exceptionally rare with an estimated prevalence of less than 1 to 5 per 1'000'000 inhabitants for each disorder. The core NA syndromes include autosomal recessive chorea-acanthocytosis and X-linked McLeod syndrome which have a Huntington´s disease-like phenotype consisting of a choreatic movement disorder, psychiatric manifestations and cognitive decline, and additional multi-system features including myopathy and axonal neuropathy. In addition, cardiomyopathy may occur in McLeod syndrome. Acanthocytes are also found in a proportion of patients with autosomal dominant Huntington's disease-like 2, autosomal recessive pantothenate kinase-associated neurodegeneration and several inherited disorders of lipoprotein metabolism, namely abetalipoproteinemia (Bassen-Kornzweig syndrome) and hypobetalipoproteinemia leading to vitamin E malabsorption. The latter disorders are characterized by a peripheral neuropathy and sensory ataxia due to dorsal column degeneration, but movement disorders and cognitive impairment are not present. NA syndromes are caused by disease-specific genetic mutations. The mechanism by which these mutations cause neurodegeneration is not known. The association of the acanthocytic membrane abnormality with selective degeneration of the basal ganglia, however, suggests a common pathogenetic pathway. Laboratory tests include blood smears to detect acanthocytosis and determination of serum creatine kinase. Cerebral magnetic resonance imaging may demonstrate striatal atrophy. Kell and Kx blood group antigens are reduced or absent in McLeod syndrome. Western blot for chorein demonstrates absence of this protein in red blood cells of chorea-acanthocytosis patients. Specific genetic testing is possible in all NA syndromes. Differential diagnoses include Huntington disease and other causes of progressive hyperkinetic movement disorders. There are no curative therapies for NA syndromes. Regular cardiologic studies and avoidance of transfusion complications are mandatory in McLeod syndrome. The hyperkinetic movement disorder may be treated as in Huntington disease. Other symptoms including psychiatric manifestations should be managed in a symptom-oriented manner. NA syndromes have a relentlessly progressive course usually over two to three decades
    • …