89 research outputs found

    Energy-Performance Scalability Analysis of a Novel Quasi-Stochastic Computing Approach

    Get PDF
    Stochastic computing (SC) is an emerging low-cost computation paradigm for efficient approximation. It processes data in forms of probabilities and offers excellent progressive accuracy. Since SC\u27s accuracy heavily depends on the stochastic bitstream length, generating acceptable approximate results while minimizing the bitstream length is one of the major challenges in SC, as energy consumption tends to linearly increase with bitstream length. To address this issue, a novel energy-performance scalable approach based on quasi-stochastic number generators is proposed and validated in this work. Compared to conventional approaches, the proposed methodology utilizes a novel algorithm to estimate the computation time based on the accuracy. The proposed methodology is tested and verified on a stochastic edge detection circuit to showcase its viability. Results prove that the proposed approach offers a 12—60% reduction in execution time and a 12—78% decrease in the energy consumption relative to the conventional counterpart. This excellent scalability between energy and performance could be potentially beneficial to certain application domains such as image processing and machine learning, where power and time-efficient approximation is desired

    Design and development from single core reconfigurable accelerators to a heterogeneous accelerator-rich platform

    Get PDF
    The performance of a platform is evaluated based on its ability to deal with the processing of multiple applications of different nature. In this context, the platform under evaluation can be of homogeneous, heterogeneous or of hybrid architecture. The selection of an architecture type is generally based on the set of different target applications and performance parameters, where the applications can be of serial or parallel nature. The evaluation is normally based on different performance metrics, e.g., resource/area utilization, execution time, power and energy consumption. This process can also include high-level performance metrics, e.g., Operations Per Second (OPS), OPS/Watt, OPS/Hz, Watt/Area etc. An example of architecture selection can be related to a wireless communication system where the processing of computationally-intensive signal-processing algorithms has strict execution-time constraints and in this case, a platform with special-purpose accelerators is relatively more suitable than a typical homogeneous platform. A couple of decades ago, it was expensive to plant many special-purpose accelerators on a chip as the cost per unit area was relatively higher than today. The utilization wall is also becoming a limiting factor in homogeneous multicore scaling which means that all the cores on a platform cannot be operated at their maximum frequency due to a possible thermal meltdown. In this case, some of the processing cores have to be turned-off or to be operated at very low frequencies making most of the part of the chip to stay underutilized. A possible solution lies in the use of heterogeneous multicore platforms where many application-specific cores operate at lower frequencies, therefore reducing power dissipation density and increasing other performance parameters. However, to achieve maximum flexibility in processing, a general-purpose flavor can also be introduced by adding a few Reduced Instruction-Set Computing (RISC) cores. A power class of heterogeneous multicore platforms is an accelerator-rich platform where many application-specific accelerators are loosely connected with each other for work load distribution or to execute the tasks independently. This research work spans from the design and development of three different types of template-based Coarse-Grain Reconfigurable Arrays (CGRAs), i.e., CREMA, AVATAR and SCREMA to a Heterogeneous Accelerator-Rich Platform (HARP). The accelerators generated from the three CGRAs could perform different lengths and types of Fast Fourier Transform (FFT), real and complex Matrix-Vector Multiplication (MVM) algorithms. CREMA and AVATAR were fixed CGRAs with eight and sixteen number of Processing Element (PE) columns, respectively. SCREMA could flex between four, eight, sixteen and thirty two number of PE columns. Many case studies were conducted to evaluate the performance of the reconfigurable accelerators generated from these CGRA templates. All of these CGRAs work in a processor/coprocessor model tightly integrated with a Direct Memory Access (DMA) device. Apart from these platforms, a reconfigurable Application-Specific Instruction-set Processor (rASIP) is also designed, tested for FFT execution under IEEE-802.11n timing constraints and evaluated against a processor/coprocessor model. It was designed by integrating AVATAR generated radix-(2, 4) FFT accelerator into the datapath of a RISC processor. The instruction set of the RISC processor was extended to perform additional operations related to AVATAR. As mentioned earlier, the underutilized part of the chip, now-a-days called Dark Silicon is posing many challenges for the designers. Apart from software optimizations, clock gating, dynamic voltage/frequency scaling and other high-level techniques, one way of dealing with this problem is to use many application-specific cores. In an effort to maximize the number of reconfigurable processing resources on a platform, the accelerator-rich architecture HARP was designed and evaluated in terms of different performance metrics. HARP is constructed on a Network-on-Chip (NoC) of 3x3 nodes where with every node, a CGRA of application-specific size is integrated other than the central node which is attached to a RISC processor. The RISC establishes synchronization between the nodes for data transfer and also performs the supervisory control. While using the NoC as the backbone of communication between the cores, it becomes possible for all the cores to address each other and also perform execution simultaneously and independently of each other. The performance of accelerators generated from CREMA, AVATAR and SCREMA templates were evaluated individually and also when attached to HARP's NoC nodes. The individual CGRAs show promising results in their own capacity but when integrated all together in the framework of HARP, interesting comparisons were established in terms of overall execution times, resource utilization, operating frequencies, power and energy consumption. In evaluating HARP, estimates and measurements were also made in some advanced performance metrics, e.g., in MOPS/mW and MOPS/MHz. The overall research work promotes the idea of heterogeneous accelerator-rich platform as a solution to current problems and future needs of industry and academia

    High performance graph analysis on parallel architectures

    Get PDF
    PhD ThesisOver the last decade pharmacology has been developing computational methods to enhance drug development and testing. A computational method called network pharmacology uses graph analysis tools to determine protein target sets that can lead on better targeted drugs for diseases as Cancer. One promising area of network-based pharmacology is the detection of protein groups that can produce better e ects if they are targeted together by drugs. However, the e cient prediction of such protein combinations is still a bottleneck in the area of computational biology. The computational burden of the algorithms used by such protein prediction strategies to characterise the importance of such proteins consists an additional challenge for the eld of network pharmacology. Such computationally expensive graph algorithms as the all pairs shortest path (APSP) computation can a ect the overall drug discovery process as needed network analysis results cannot be given on time. An ideal solution for these highly intensive computations could be the use of super-computing. However, graph algorithms have datadriven computation dictated by the structure of the graph and this can lead to low compute capacity utilisation with execution times dominated by memory latency. Therefore, this thesis seeks optimised solutions for the real-world graph problems of critical node detection and e ectiveness characterisation emerged from the collaboration with a pioneer company in the eld of network pharmacology as part of a Knowledge Transfer Partnership (KTP) / Secondment (KTS). In particular, we examine how genetic algorithms could bene t the prediction of protein complexes where their removal could produce a more e ective 'druggable' impact. Furthermore, we investigate how the problem of all pairs shortest path (APSP) computation can be bene ted by the use of emerging parallel hardware architectures as GPU- and FPGA- desktop-based accelerators. In particular, we address the problem of critical node detection with the development of a heuristic search method. It is based on a genetic algorithm that computes optimised node combinations where their removal causes greater impact than common impact analysis strategies. Furthermore, we design a general pattern for parallel network analysis on multi-core architectures that considers graph's embedded properties. It is a divide and conquer approach that decomposes a graph into smaller subgraphs based on its strongly connected components and computes the all pairs shortest paths concurrently on GPU. Furthermore, we use linear algebra to design an APSP approach based on the BFS algorithm. We use algebraic expressions to transform the problem of path computation to multiple independent matrix-vector multiplications that are executed concurrently on FPGA. Finally, we analyse how the optimised solutions of perturbation analysis and parallel graph processing provided in this thesis will impact the drug discovery process.This research was part of a Knowledge Transfer Partnership (KTP) and Knowledge Transfer Secondment (KTS) between e-therapeutics PLC and Newcastle University. It was supported as a collaborative project by e-therapeutics PLC and Technology Strategy boar

    Energy-Efficient FPGA-Based Parallel Quasi-Stochastic Computing

    Get PDF
    The high performance of FPGA (Field Programmable Gate Array) in image processing applications is justified by its flexible reconfigurability, its inherent parallel nature and the availability of a large amount of internal memories. Lately, the Stochastic Computing (SC) paradigm has been found to be significantly advantageous in certain application domains including image processing because of its lower hardware complexity and power consumption. However, its viability is deemed to be limited due to its serial bitstream processing and excessive run-time requirement for convergence. To address these issues, a novel approach is proposed in this work where an energy-efficient implementation of SC is accomplished by introducing fast-converging Quasi-Stochastic Number Generators (QSNGs) and parallel stochastic bitstream processing, which are well suited to leverage FPGA\u27s reconfigurability and abundant internal memory resources. The proposed approach has been tested on the Virtex-4 FPGA, and results have been compared with the serial and parallel implementations of conventional stochastic computation using the well-known SC edge detection and multiplication circuits. Results prove that by using this approach, execution time, as well as the power consumption are decreased by a factor of 3.5 and 4.5 for the edge detection circuit and multiplication circuit, respectively

    Options for Denormal Representation in Logarithmic Arithmetic

    Get PDF
    International audienceEconomical hardware often uses a FiXed-point Number System (FXNS), whose constant absolute precision is acceptable for many signal-processing algorithms. The almost-constant relative precision of the more expensive Floating-Point (FP) number system simplifies design, for example, by eliminating worries about FXNS overflow because the range of FP is much larger than FXNS for the same wordsize; however, primitive FP introduces another problem: underflow. The conventional Signed Logarithmic Number System (SLNS) offers similar range and precision as FP with much better performance (in terms of power, speed and area) for multiplication, division, powers and roots. Moderate-precision addition in SLNS uses table lookup with properties similar to FP (including underflow). This paper proposes a new number system, called the Denormal LNS (DLNS), which is a hybrid of the properties of FXNS and SLNS. The inspiration for DLNS comes from the denormal (aka subnormal) numbers found in IEEE-754 (that provide better, gradual underflow) and the μ-law often used for speech encoding; the novel DLNS circuit here allows arithmetic to be performed directly on such encoded data. The proposed approach allows customizing the range in which gradual underflow occurs. A wide gradual underflow range acts like FXNS; a narrow one acts like SLNS. The DLNS approach is most affordable for applications involving addition, subtraction and multiplication by constants, such as the Fast Fourier Transform (FFT). Simulation of an FFT application illustrates a moderate gradual underflow decreasing bit-switching activity 15% compared to underflow-free SLNS, at the cost of increasing application error by 30%. DLNS reduces switching activity 5% to 20% more than an abruptly-underflowing SLNS with one-half the error. Synthesis shows the novel circuit primarily consists of traditional SLNS addition and subtraction tables, with additional datapaths that allow the novel ALU to act on conventional SLNS as well as DLNS and mixed data, for a worst-case area overhead of 26%. For similar range and precision, simulation of Taylor-series computations suggest subnormal values in DLNS behave similarly to those in the IEEE-754 FP standard. Unlike SLNS, DLNS approach is quite costly for general (non-constant) multiplication, division and roots. To overcome this difficulty, this paper proposes two variation called Denormal Mitchell LNS (DMLNS) and Denormal Offset Mitchell LNS (DOMLNS), in which the well-known Mitchell's method makes the cost of general multiplication, division and roots closer to that of SLNS. Taylor-series computations suggest subnormal values in DMLNS and DOMLNS also behave similarly to those in the IEEE-754 FP standard. Synthesis shows that DMLNS and DOMLNS respectively have average area overheads of 25% and 17% compared to an equivalent SLNS 5-operation unit.Les circuits intégrés économiques utilisent souvent des systèmes de numération en virgule fixe, dont la précision absolue constante est acceptable pour de nombreux algorithmes de traitement du signal. La précision relative quasi-constante du système virgule flottante, plus coûteux, simplifie la conception, en éliminant notamment le risque de débordement par le haut, la dynamique du flottant étant bien plus grande qu'en virgule fixe. Cependant, le flottant primitif induit un autre problème : le débordement par le bas (underflow). Le système logarithmique conventionnel (SLNS) offre une dynamique et une précision similaire au flottant, pour des performances bien meilleures (en termes de consommation, vitesse et surface) pour la multiplication, la division, les puissances et les racines. L'addition en précision moyenne en SLNS est basées sur des accès à des tables, avec des propriétés similaires au flottant (incluant le débordement par le bas). Cet article propose trois variations autour d'un nouveau système de représentation des nombres, respectivement appelées Denormal LNS (DLNS), Denormal Mitchell LNS (DMLNS) et Denormal Offset Mitchell LNS (DOMLNS), qui sont toutes des hybrides des propriétés de la virgule fixe et du SLNS. L'inspiration de D(OM)LNS vient des nombre dénormaux (ou sous-normaux) de la norme IEEE-754, qui fournissent un débordement par le bas graduel, et le codage µ-law utilisé dans la transmission de la voix. Le nouveau circuit DLNS proposé permet de calculer directement sur les données codées. L'approche proposée permet d'ajuster l'intervalle dans lequel le débordement progressif intervient. Une plage large se comporte comme la virgule fixe, une étroite comme le SLNS. L'approche DLNS est la plus économique pour les applications impliquant des additions, soustractions et multiplications par des constantes, telles que les transformées de Fourier rapides (FFT). Notre première mise en {\oe}uvre s'appuie sur les blocs de base existant d SLNS. Des synthèses montrent que le nouveau circuit est constitué principalement des tables d'additions SLNS traditionnelles, avec des chemins de données supplémentaires qui permettent à la nouvelle unité d'opérer sur des données SLNS, DLNS ou mixtes, pour un surcoût en surface de 26% dans le pire cas. Contrairement au SLNS, cette réalisation de DLNS reste coûteuse pour la multiplication générique, la division et les racines. Pour surmonter cette difficulté, cet article propose les variations DMLNS et DOMLNS, pour lesquelles la méthode de Mitchell rapproche le coût des multiplications génériques, divisions et racines de leurs équivalents en SLNS. Des calculs sur des séries de Taylor suggèrent que les valeurs sous-normales en DMLNS et DOMLNS se comportent également de manière similaires à celles de la norme IEEE-754. Des synthèses montrent que DMLNS et DOMLNS offrent des surcoûts respectifs de 25% et 17% par rapport à une unité SLNS à 5 opérations équivalente
    • …
    corecore