67 research outputs found

    Active learning based laboratory towards engineering education 4.0

    Get PDF
    Universities have a relevant and essential key role to ensure knowledge and development of competencies in the current fourth industrial revolution called Industry 4.0. The Industry 4.0 promotes a set of digital technologies to allow the convergence between the information technology and the operation technology towards smarter factories. Under such new framework, multiple initiatives are being carried out worldwide as response of such evolution, particularly, from the engineering education point of view. In this regard, this paper introduces the initiative that is being carried out at the Technical University of Catalonia, Spain, called Industry 4.0 Technologies Laboratory, I4Tech Lab. The I4Tech laboratory represents a technological environment for the academic, research and industrial promotion of related technologies. First, in this work, some of the main aspects considered in the definition of the so called engineering education 4.0 are discussed. Next, the proposed laboratory architecture, objectives as well as considered technologies are explained. Finally, the basis of the proposed academic method supported by an active learning approach is presented.Postprint (published version

    A Comprehensive Review on Time Sensitive Networks with a Special Focus on Its Applicability to Industrial Smart and Distributed Measurement Systems

    Get PDF
    The groundbreaking transformations triggered by the Industry 4.0 paradigm have dramati-cally reshaped the requirements for control and communication systems within the factory systems of the future. The aforementioned technological revolution strongly affects industrial smart and distributed measurement systems as well, pointing to ever more integrated and intelligent equipment devoted to derive accurate measurements. Moreover, as factory automation uses ever wider and complex smart distributed measurement systems, the well-known Internet of Things (IoT) paradigm finds its viability also in the industrial context, namely Industrial IoT (IIoT). In this context, communication networks and protocols play a key role, directly impacting on the measurement accuracy, causality, reliability and safety. The requirements coming both from Industry 4.0 and the IIoT, such as the coexistence of time-sensitive and best effort traffic, the need for enhanced horizontal and vertical integration, and interoperability between Information Technology (IT) and Operational Technology (OT), fostered the development of enhanced communication subsystems. Indeed, established tech-nologies, such as Ethernet and Wi-Fi, widespread in the consumer and office fields, are intrinsically non-deterministic and unable to support critical traffic. In the last years, the IEEE 802.1 Working Group defined an extensive set of standards, comprehensively known as Time Sensitive Networking (TSN), aiming at reshaping the Ethernet standard to support for time-, mission-and safety-critical traffic. In this paper, a comprehensive overview of the TSN Working Group standardization activity is provided, while contextualizing TSN within the complex existing industrial technological panorama, particularly focusing on industrial distributed measurement systems. In particular, this paper has to be considered a technical review of the most important features of TSN, while underlining its applicability to the measurement field. Furthermore, the adoption of TSN within the Wi-Fi technology is addressed in the last part of the survey, since wireless communication represents an appealing opportunity in the industrial measurement context. In this respect, a test case is presented, to point out the need for wirelessly connected sensors networks. In particular, by reviewing some literature contributions it has been possible to show how wireless technologies offer the flexibility necessary to support advanced mobile IIoT applications

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Generating Diagnostic Bayesian Networks from Qualitative Causal Models

    Get PDF

    Virtual engineering and commissioning to support the lifecycle of a manufacturing assembly system

    Get PDF
    Prior to the physical build of the industrial automation system, some challenges arise, such as processes’ cycle times calculations, ergonomics and safety evaluation, and the integration of separate machines to the complete production shops. This, in turn, requires reconfiguring the processes and component parameters. As a result, the lifecycle of the system development is prolonged, and the potential for erroneous performance increases. In modern digital manufacturing environments, virtual engineering (VE) and virtual commissioning (VC) serve as effective tools to tackle the aforementioned problems and their consequences. The virtual models developed for VE and VC not only assist system developers in the physical build stage but also in the following stages of the system lifecycle by providing a common virtual model, a digital twin (DT), of the manufacturing processes and the product. This developed model should possess the ability to simulate the system behaviour, e.g., the mechanics, kinematics, speed and acceleration profiles. Three stakeholders are involved in the development process: the machine builder, system integrator and end user. The current work focuses on the virtual engineering approach to support the entire lifecycle of a manufacturing system from the machine builder, system integrator and end user perspectives. For this purpose, it puts forward a systematic methodology of implementing VC and VE using a toolset developed by the Automation Systems Group at the University of Warwick within an industrial project. The suggested methodology is illustrated in a case study where a digital twin of a physical station was modelled, developed and tested in parallel with the physical machine development and build. Finally, the benefits and limitations are highlighted based on the gained outcomes and the implemented activities

    SMILE: Smart Monitoring IoT Learning Ecosystem

    Get PDF
    In industrial contexts to date, there are several solutions to monitor and intervene in case of anomalies and/or failures. Using a classic approach to cover all the requirements needed in the industrial field, different solutions should be implemented for different monitoring platforms, covering the required end-to-end. The classic cause-effect association process in the field of industrial monitoring requires thorough understanding of the monitored ecosystem and the main characteristics triggering the detected anomalies. In these cases, complex decision-making systems are in place often providing poor results. This paper introduces a new approach based on an innovative industrial monitoring platform, which has been denominated SMILE. It allows offering an automatic service of global modern industry performance monitoring, giving the possibility to create, by setting goals, its own machine/deep learning models through a web dashboard from which one can view the collected data and the produced results.  Thanks to an unsupervised approach the SMILE platform can understand which the linear and non-linear correlations are representing the overall state of the system to predict and, therefore, report abnormal behavior

    Simple Design Approach for Shared Digital Twins

    Get PDF
    The collaborative utilization of data becomes increasingly important in industry and requires increased consideration of interoperability and data sovereignty aspects. Distributed systems play a decisive role in this context, which allow for a closer communication between the stakeholders involved and are characterized by the shared use of data and devices. At the same time new concepts emerge that enable a structured mapping of data. These include Digital Twins, which primarily allow a holistic digital representation of an entire asset lifecycle. Digital Twins offer significant potential for distributed systems and form a suitable basis for the collaborative utilization of an asset's lifecycle data. Although studies assume an increased use of Digital Twins in cross-company networks, they are still predominantly used as a purely company-internal concept. In the context of this publication, we demonstrate how to get started easily with the design of Digital Twins intended for use in collaborative distributed systems

    Energy Management in Buildings: Lessons Learnt for Modeling and Advanced Control Design

    Get PDF
    This paper presents a comparative analysis of different modeling and control techniques that can be used to tackle the energy efficiency and management problems in buildings. Multiple resources are considered, from generation to storage, distribution and delivery. In particular, it is shown what are the real needs and advantages of adopting different techniques, based on different applications, type of buildings, boundary conditions. This contribution is based widely on the experience performed by the authors in the recent years in dealing with existing residential, commercial and tertiary filed buildings, with application ranging from local temperature control up to smart grids where buildings are seen as an active node of the grid thanks to their ability to shape the thermal and electrical profile in real time. As for control models, a wide range of modeling techniques are here investigated and compared, from linear time-invariant models, to time-varying, to nonlinear ones. Similarly, control techniques include adaptive ones and real-time predictive ones

    Engineering Method and Tool for the Complete Virtual Commissioning of Robotic Cells

    Get PDF
    Intelligent robotic manufacturing cells must adapt to ever-varying operating conditions, developing autonomously optimal manufacturing strategies to achieve the best quality and overall productivity. Intelligent and cognitive behaviors are realized by using distributed controllers, in which complex control logics must interact and process a wide variety of input/output signals. In particular, programmable logic controllers (PLCs) and robot controllers must be coordinated and integrated. Then, there is the need to simulate the robotic cells’ behavior for performance verification and optimization by evaluating the effects of both PLC and robot control codes. In this context, this work proposes a method, and its implementation into an integrated tool, to exploit the potential of ABB RobotStudio software as a virtual prototyping platform for robotic cells, in which real robots control codes are executed on a virtual controller and integrated with Beckhoff PLC environment. For this purpose, a PLC Smart Component was conceived as an extension of RobotStudio functionalities to exchange signals with a TwinCAT instance. The new module allows the virtual commissioning of a complete robotic cell to be performed, assessing the control logics effects on the overall productivity. The solution is demonstrated on a robotic assembly cell, showing its feasibility and effectiveness in optimizing the final performance

    Application of the sequence planner control framework to an intelligent automation system with a focus on error handling

    Get PDF
    Future automation systems are likely to include devices with a varying degree of autonomy, as well as advanced algorithms for perception and control. Human operators will be expected to work side by side with both collaborative robots performing assembly tasks and roaming robots that handle material transport. To maintain the flexibility provided by human operators when introducing such robots, these autonomous robots need to be intelligently coordinated, i.e., they need to be supported by an intelligent automation system. One challenge in developing intelligent automation systems is handling the large amount of possible error situations that can arise due to the volatile and sometimes unpredictable nature of the environment. Sequence Planner is a control framework that supports the development of intelligent automation systems. This paper describes Sequence Planner and tests its ability to handle errors that arise during execution of an intelligent automation system. An automation system, developed using Sequence Planner, is subjected to a number of scenarios where errors occur. The error scenarios and experimental results are presented along with a discussion of the experience gained in trying to achieve robust intelligent automation
    corecore