273 research outputs found

    Control What You Include! Server-Side Protection against Third Party Web Tracking

    Get PDF
    Third party tracking is the practice by which third parties recognize users accross different websites as they browse the web. Recent studies show that 90% of websites contain third party content that is tracking its users across the web. Website developers often need to include third party content in order to provide basic functionality. However, when a developer includes a third party content, she cannot know whether the third party contains tracking mechanisms. If a website developer wants to protect her users from being tracked, the only solution is to exclude any third-party content, thus trading functionality for privacy. We describe and implement a privacy-preserving web architecture that gives website developers a control over third party tracking: developers are able to include functionally useful third party content, the same time ensuring that the end users are not tracked by the third parties

    MooseGuard: secure file sharing at scale in untrusted environments

    Get PDF
    Shared storage systems provide cheap, scalable, and reliable storage, but secure sharing in these systems requires users to encrypt their data and limit efficient sharing or trust a service provider to faithfully keep their data private. Current research has explored the use of trusted execution environments (TEEs) to operate on sensitive data and sharing policies in isolated execution. That work enables the utilization of untrusted shared resources to store and share sensitive data while maintaining stronger security guarantees. However, current research has limitations in scaling these solutions, as it bottlenecks both metadata and data operations within the same physical TEE, whereas a scaled file system distributes metadata and data operations to separate devices. This paper explores the use of two TEEs specialized for metadata and data operations to provide file sharing at scale with less overhead in addition to strong security guarantees. This approach achieves scaled metadata and concurrent use by utilizing a server-side TEE for isolated execution on a master server and provides data privacy and efficient access revocation through a client-side TEE. MooseGuard is the prototype implementation of this design, utilizing Intel SGX as a TEE and extending the MooseFS distributed file system. MooseGuard's implementation details the modifications needed to provide security and shows how this approach can be applied to a typical distributed file system. An evaluation of MooseGuard demonstrates that TEEs specialized for metadata and data operations allow a secured distributed file system to maintain its scale with only constant overheads. As TEEs and secure hardware become more widely available in public clouds, enterprise, and personal devices, MooseGuard presents a way for users to get the best of both worlds in data privacy and efficient sharing when using scaled, shared storage systems

    Fidelius: Protecting User Secrets from Compromised Browsers

    Get PDF
    Users regularly enter sensitive data, such as passwords, credit card numbers, or tax information, into the browser window. While modern browsers provide powerful client-side privacy measures to protect this data, none of these defenses prevent a browser compromised by malware from stealing it. In this work, we present Fidelius, a new architecture that uses trusted hardware enclaves integrated into the browser to enable protection of user secrets during web browsing sessions, even if the entire underlying browser and OS are fully controlled by a malicious attacker. Fidelius solves many challenges involved in providing protection for browsers in a fully malicious environment, offering support for integrity and privacy for form data, JavaScript execution, XMLHttpRequests, and protected web storage, while minimizing the TCB. Moreover, interactions between the enclave and the browser, the keyboard, and the display all require new protocols, each with their own security considerations. Finally, Fidelius takes into account UI considerations to ensure a consistent and simple interface for both developers and users. As part of this project, we develop the first open source system that provides a trusted path from input and output peripherals to a hardware enclave with no reliance on additional hypervisor security assumptions. These components may be of independent interest and useful to future projects. We implement and evaluate Fidelius to measure its performance overhead, finding that Fidelius imposes acceptable overhead on page load and user interaction for secured pages and has no impact on pages and page components that do not use its enhanced security features

    A Composable Security Treatment of the Lightning Network

    Get PDF
    • …
    corecore