1,468 research outputs found

    Triplicity and Physical Characteristics of Asteroid (216) Kleopatra

    Full text link
    To take full advantage of the September 2008 opposition passage of the M-type asteroid (216) Kleopatra, we have used near-infrared adaptive optics (AO) imaging with the W.M. Keck II telescope to capture unprecedented high resolution images of this unusual asteroid. Our AO observations with the W.M. Keck II telescope, combined with Spitzer/IRS spectroscopic observations and past stellar occultations, confirm the value of its IRAS radiometric radius of 67.5 km as well as its dog-bone shape suggested by earlier radar observations. Our Keck AO observations revealed the presence of two small satellites in orbit about Kleopatra (see Marchis et al., 2008). Accurate measurements of the satellite orbits over a full month enabled us to determine the total mass of the system to be 4.64+/-0.02 10^18 Kg. This translates into a bulk density of 3.6 +/-0.4 g/cm3, which implies a macroscopic porosity for Kleopatra of ~ 30-50%, typical of a rubble-pile asteroid. From these physical characteristics we measured its specific angular momentum, very close to that of a spinning equilibrium dumbbell.Comment: 35 pages, 3 Tables, 9 Figures. In press to Icaru

    Spectroscopic survey of M--type asteroids

    Full text link
    M-type asteroids, as defined in the Tholen taxonomy (Tholen, 1984), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron-nickel meteorites and enstatite chondrites. We carried out a spectroscopic survey in the visible and near infrared wavelength range (0.4-2.5 micron) of 30 asteroids chosen from the population of asteroids initially classified as Tholen M -types, aiming to investigate their surface composition. The data were obtained during several observing runs during the years 2004-2007 at the TNG, NTT, and IRTF telescopes. We computed the spectral slopes in several wavelength ranges for each observed asteroid, and we searched for diagnostic spectral features. We confirm a large variety of spectral behaviors for these objects as their spectra are extended into the near-infrared, including the identification of weak absorption bands, mainly of the 0.9 micron band tentatively attributed to orthopyroxene, and of the 0.43 micron band that may be associated to chlorites and Mg-rich serpentines or pyroxene minerals such us pigeonite or augite. A comparison with previously published data indicates that the surfaces of several asteroids belonging to the M-class may vary significantly. We attempt to constrain the asteroid surface compositions of our sample by looking for meteorite spectral analogues in the RELAB database and by modelling with geographical mixtures of selected meteorites/minerals. We confirm that iron meteorites, pallasites, and enstatite chondrites are the best matches to most objects in our sample, as suggested for M-type asteroids. The presence of subtle absorption features on several asteroids confirms that not all objects defined by the Tholen M-class have a pure metallic composition.Comment: 10 figures, 6 tables; Icarus, in pres

    (216) Kleopatra, a low density critically rotating M-type asteroid

    Get PDF
    Context. The recent estimates of the 3D shape of the M/Xe-type triple asteroid system (216) Kleopatra indicated a density of ~5 g cm−3, which is by far the highest for a small Solar System body. Such a high density implies a high metal content as well as a low porosity which is not easy to reconcile with its peculiar “dumbbell” shape. Aims. Given the unprecedented angular resolution of the VLT/SPHERE/ZIMPOL camera, here, we aim to constrain the mass (via the characterization of the orbits of the moons) and the shape of (216) Kleopatra with high accuracy, hence its density. Methods. We combined our new VLT/SPHERE observations of (216) Kleopatra recorded during two apparitions in 2017 and 2018 with archival data from the W. M. Keck Observatory, as well as lightcurve, occultation, and delay-Doppler images, to derive a model of its 3D shape using two different algorithms (ADAM, MPCD). Furthermore, an N-body dynamical model allowed us to retrieve the orbital elements of the two moons as explained in the accompanying paper. Results. The shape of (216) Kleopatra is very close to an equilibrium dumbbell figure with two lobes and a thick neck. Its volume equivalent diameter (118.75 ± 1.40) km and mass (2.97 ± 0.32) × 1018 kg (i.e., 56% lower than previously reported) imply a bulk density of (3.38 ± 0.50) g cm−3. Such a low density for a supposedly metal-rich body indicates a substantial porosity within the primary. This porous structure along with its near equilibrium shape is compatible with a formation scenario including a giant impact followed by reaccumulation. (216) Kleopatra’s current rotation period and dumbbell shape imply that it is in a critically rotating state. The low effective gravity along the equator of the body, together with the equatorial orbits of the moons and possibly rubble-pile structure, opens the possibility that the moons formed via mass shedding. Conclusions. (216) Kleopatra is a puzzling multiple system due to the unique characteristics of the primary. This system certainly deserves particular attention in the future, with the Extremely Large Telescopes and possibly a dedicated space mission, to decipher its entire formation history
    • …
    corecore