103 research outputs found

    Controlling Concurrent Change - A Multiview Approach Toward Updatable Vehicle Automation Systems

    Get PDF
    The development of SAE Level 3+ vehicles [{SAE}, 2014] poses new challenges not only for the functional development, but also for design and development processes. Such systems consist of a growing number of interconnected functional, as well as hardware and software components, making safety design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough systems engineering becomes a key requirement, which enables traceability between different design viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of such systems. Formal models can in turn assist in keeping track of how the different viewpoints relate to each other and how the interplay of components affects the overall system behavior. Based on experience from the project Controlling Concurrent Change, this paper presents an approach towards model-based integration and verification of a cause effect chain for a component-based vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers necessary aspects of a design in individual architectural views, e.g. safety and timing. In the synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into the design to ensure adherence to the model. We present a use case description for an environment perception system, starting with a functional architecture, which is the basis for componentization of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we are able to map the reasoning done during verification to vehicle behavior

    Driver Distraction Identification with an Ensemble of Convolutional Neural Networks

    Full text link
    The World Health Organization (WHO) reported 1.25 million deaths yearly due to road traffic accidents worldwide and the number has been continuously increasing over the last few years. Nearly fifth of these accidents are caused by distracted drivers. Existing work of distracted driver detection is concerned with a small set of distractions (mostly, cell phone usage). Unreliable ad-hoc methods are often used.In this paper, we present the first publicly available dataset for driver distraction identification with more distraction postures than existing alternatives. In addition, we propose a reliable deep learning-based solution that achieves a 90% accuracy. The system consists of a genetically-weighted ensemble of convolutional neural networks, we show that a weighted ensemble of classifiers using a genetic algorithm yields in a better classification confidence. We also study the effect of different visual elements in distraction detection by means of face and hand localizations, and skin segmentation. Finally, we present a thinned version of our ensemble that could achieve 84.64% classification accuracy and operate in a real-time environment.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0949

    A Complete Framework for a Behavioral Planner with Automated Vehicles: A Car-Sharing Fleet Relocation Approach

    Get PDF
    Currently, research on automated vehicles is strongly related to technological advances to achieve a safe, more comfortable driving process in different circumstances. The main achievements are focused mainly on highway and interurban scenarios. The urban environment remains a complex scenario due to the number of decisions to be made in a restrictive context. In this context, one of the main challenges is the automation of the relocation process of car-sharing in urban areas, where the management of the platooning and automatic parking and de-parking maneuvers needs a solution from the decision point of view. In this work, a novel behavioral planner framework based on a Finite State Machine (FSM) is proposed for car-sharing applications in urban environments. The approach considers four basic maneuvers: platoon following, parking, de-parking, and platoon joining. In addition, a basic V2V communication protocol is proposed to manage the platoon. Maneuver execution is achieved by implementing both classical (i.e., PID) and Model-based Predictive Control (i.e., MPC) for the longitudinal and lateral control problems. The proposed behavioral planner was implemented in an urban scenario with several vehicles using the Carla Simulator, demonstrating that the proposed planner can be helpful to solve the car-sharing fleet relocation problem in cities.This research was funded by the Goberment of the Basque Country (funding no. KK-2021/00123 and IT1726-22) and the European SHOW Project from the Horizon 2020 (funding no. 875530)

    SLAV-Sim: A Framework for Self-Learning Autonomous Vehicle Simulation:SLAV-Sim

    Get PDF
    With the advent of autonomous vehicles, sensors and algorithm testing have become crucial parts of the autonomous vehicle development cycle. Having access to real-world sensors and vehicles is a dream for researchers and small-scale original equipment manufacturers (OEMs) due to the software and hardware development life-cycle duration and high costs. Therefore, simulator-based virtual testing has gained traction over the years as the preferred testing method due to its low cost, efficiency, and effectiveness in executing a wide range of testing scenarios. Companies like ANSYS and NVIDIA have come up with robust simulators, and open-source simulators such as CARLA have also populated the market. However, there is a lack of lightweight and simple simulators catering to specific test cases. In this paper, we introduce the SLAV-Sim, a lightweight simulator that specifically trains the behaviour of a self-learning autonomous vehicle. This simulator has been created using the Unity engine and provides an end-to-end virtual testing framework for different reinforcement learning (RL) algorithms in a variety of scenarios using camera sensors and raycasts

    A Review of Model Predictive Controls Applied to Advanced Driver-Assistance Systems

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are currently gaining particular attention in the automotive field, as enablers for vehicle energy consumption, safety, and comfort enhancement. Compelling evidence is in fact provided by the variety of related studies that are to be found in the literature. Moreover, considering the actual technology readiness, larger opportunities might stem from the combination of ADASs and vehicle connectivity. Nevertheless, the definition of a suitable control system is not often trivial, especially when dealing with multiple-objective problems and dynamics complexity. In this scenario, even though diverse strategies are possible (e.g., Equivalent Consumption Minimization Strategy, Rule-based strategy, etc.), the Model Predictive Control (MPC) turned out to be among the most effective ones in fulfilling the aforementioned tasks. Hence, the proposed study is meant to produce a comprehensive review of MPCs applied to scenarios where ADASs are exploited and aims at providing the guidelines to select the appropriate strategy. More precisely, particular attention is paid to the prediction phase, the objective function formulation and the constraints. Subsequently, the interest is shifted to the combination of ADASs and vehicle connectivity to assess for how such information is handled by the MPC. The main results from the literature are presented and discussed, along with the integration of MPC in the optimal management of higher level connection and automation. Current gaps and challenges are addressed to, so as to possibly provide hints on future developments

    Platoon Merging Approach Based on Hybrid Trajectory Planning and CACC Strategies

    Get PDF
    Currently, the increase of transport demands along with the limited capacity of the road network have increased traffic congestion in urban and highway scenarios. Technologies such as Cooperative Adaptive Cruise Control (CACC) emerge as efficient solutions. However, a higher level of cooperation among multiple vehicle platoons is needed to improve, effectively, the traffic flow. In this paper, a global solution to merge two platoons is presented. This approach combines: (i) a longitudinal controller based on a feed-back/feed-forward architecture focusing on providing CACC capacities and (ii) hybrid trajectory planning to merge platooning on straight paths. Experiments were performed using Tecnalia’s previous basis. These are the AUDRIC modular architecture for automated driving and the highly reliable simulation environment DYNACAR. A simulation test case was conducted using five vehicles, two of them executing the merging and three opening the gap to the upcoming vehicles. The results showed the good performance of both domains, longitudinal and lateral, merging multiple vehicles while ensuring safety and comfort and without propagating speed changes.This research was supported by the European Project SHOW from the Horizon 2020 program under Grant Agreement No. 875530
    • …
    corecore