75 research outputs found

    Fastaer det: Fast aerial embedded real-time detection

    Get PDF
    Automated detection of objects in aerial imagery is the basis for many applications, such as search and rescue operations, activity monitoring or mapping. However, in many cases it is beneficial to employ a detector on-board of the aerial platform in order to avoid latencies, make basic decisions within the platform and save transmission bandwidth. In this work, we address the task of designing such an on-board aerial object detector, which meets certain requirements in accuracy, inference speed and power consumption. For this, we first outline a generally applicable design process for such on-board methods and then follow this process to develop our own set of models for the task. Specifically, we first optimize a baseline model with regards to accuracy while not increasing runtime. We then propose a fast detection head to significantly improve runtime at little cost in accuracy. Finally, we discuss several aspects to consider during deployment and in the runtime environment. Our resulting four models that operate at 15, 30, 60 and 90 FPS on an embedded Jetson AGX device are published for future benchmarking and comparison by the community

    Transformers in pedestrian image retrieval and person re-identification in a multi-camera surveillance system

    Full text link
    Person Re-Identification is an essential task in computer vision, particularly in surveillance applications. The aim is to identify a person based on an input image from surveillance photographs in various scenarios. Most Person re-ID techniques utilize Convolutional Neural Networks (CNNs); however, Vision Transformers are replacing pure CNNs for various computer vision tasks such as object recognition, classification, etc. The vision transformers contain information about local regions of the image. The current techniques take this advantage to improve the accuracy of the tasks underhand. We propose to use the vision transformers in conjunction with vanilla CNN models to investigate the true strength of transformers in person re-identification. We employ three backbones with different combinations of vision transformers on two benchmark datasets. The overall performance of the backbones increased, showing the importance of vision transformers. We provide ablation studies and show the importance of various components of the vision transformers in re-identification tasks.

    Automatic Fungi Recognition: Deep Learning Meets Mycology

    Get PDF
    The article presents an AI-based fungi species recognition system for a citizen-science community. The system’s real-time identification too — FungiVision — with a mobile application front-end, led to increased public interest in fungi, quadrupling the number of citizens collecting data. FungiVision, deployed with a human-in-the-loop, reaches nearly 93% accuracy. Using the collected data, we developed a novel fine-grained classification dataset — Danish Fungi 2020 (DF20) — with several unique characteristics: species-level labels, a small number of errors, and rich observation metadata. The dataset enables the testing of the ability to improve classification using metadata, e.g., time, location, habitat and substrate, facilitates classifier calibration testing and finally allows the study of the impact of the device settings on the classification performance. The continual flow of labelled data supports improvements of the online recognition system. Finally, we present a novel method for the fungi recognition service, based on a Vision Transformer architecture. Trained on DF20 and exploiting available metadata, it achieves a recognition error that is 46.75% lower than the current system. By providing a stream of labeled data in one direction, and an accuracy increase in the other, the collaboration creates a virtuous cycle helping both communities

    Action recognition using single-pixel time-of-flight detection

    Get PDF
    Action recognition is a challenging task that plays an important role in many robotic systems, which highly depend on visual input feeds. However, due to privacy concerns, it is important to find a method which can recognise actions without using visual feed. In this paper, we propose a concept for detecting actions while preserving the test subject's privacy. Our proposed method relies only on recording the temporal evolution of light pulses scattered back from the scene. Such data trace to record one action contains a sequence of one-dimensional arrays of voltage values acquired by a single-pixel detector at 1 GHz repetition rate. Information about both the distance to the object and its shape are embedded in the traces. We apply machine learning in the form of recurrent neural networks for data analysis and demonstrate successful action recognition. The experimental results show that our proposed method could achieve on average 96.47 % accuracy on the actions walking forward, walking backwards, sitting down, standing up and waving hand, using recurrent neural network
    • …
    corecore