479 research outputs found

    Remote Sensing of Snow Cover Using Spaceborne SAR: A Review

    Get PDF
    The importance of snow cover extent (SCE) has been proven to strongly link with various natural phenomenon and human activities; consequently, monitoring snow cover is one the most critical topics in studying and understanding the cryosphere. As snow cover can vary significantly within short time spans and often extends over vast areas, spaceborne remote sensing constitutes an efficient observation technique to track it continuously. However, as optical imagery is limited by cloud cover and polar darkness, synthetic aperture radar (SAR) attracted more attention for its ability to sense day-and-night under any cloud and weather condition. In addition to widely applied backscattering-based method, thanks to the advancements of spaceborne SAR sensors and image processing techniques, many new approaches based on interferometric SAR (InSAR) and polarimetric SAR (PolSAR) have been developed since the launch of ERS-1 in 1991 to monitor snow cover under both dry and wet snow conditions. Critical auxiliary data including DEM, land cover information, and local meteorological data have also been explored to aid the snow cover analysis. This review presents an overview of existing studies and discusses the advantages, constraints, and trajectories of the current developments

    Impact of signal quantization on the performance of RFI mitigation algorithms

    Get PDF
    Radio Frequency Interference (RFI) is currently a major problem in Communications and Earth Observation, but it is even more dramatic in Microwave Radiometry because of the low power levels of the received signals. Its impact has been attested in several Earth Observation missions. On-board mitigation systems are becoming a requirement to detect and remove affected measurements, increasing thus radiometric accuracy and spatial coverage. However, RFI mitigation methods have not been tested yet in the context of some particular radiometer topologies, which rely on the use of coarsely quantized streams of data. In this study, the impact of quantization and sampling in the performance of several known RFI mitigation algorithms is studied under different conditions. It will be demonstrated that in the presence of clipping, quantization changes fundamentally the time-frequency properties of the contaminated signal, strongly impairing the performance of most mitigation methods. Important design considerations are derived from this analysis that must be taken into account when defining the architecture of future instruments. In particular, the use of Automatic Gain Control (AGC) systems is proposed, and its limitations are discussedPeer ReviewedPostprint (published version

    Explicit Complex Solutions to the Fresnel Coefficients

    Get PDF
    Global Navigation Satellite System Reflectometry (GNSS-R) is a microwave remote sensing technique which can be used to derive information about the composition or the properties of ground surfaces. The received power of the GPS signals reflected by the ground is proportional to the magnitude of the reflection Fresnel coefficients In particular, it depends on the incidence angle θ\theta and on the ground's permittivity ϵ\epsilon. The knowledge of ϵ\epsilon is important for determining various conditions and characteristics of the surface (e.g., soil moisture, salinity, freeze-thaw transitions). The value of ϵ\epsilon can be found from the Fresnel reflection coefficients, for a given incidence angle θ\theta. For dispersive media, ϵ\epsilon is a complex quantity; we present explicit formulas, which express both (ε)\Re(\varepsilon) and (ε)\Im(\varepsilon) as a function of the incident angle θ\theta and of the magnitude of the linearly polarized Fresnel reflection coefficients

    Characteristics of the Global Radio Frequency Interference in the Protected Portion of L-Band

    Get PDF
    The National Aeronautics and Space Administration’s (NASA’s) Soil Moisture Active–Passive (SMAP) radiometer has been providing geolocated power moments measured within a 24 MHz band in the protected portion of L-band, i.e., 1400–1424 MHz, with 1.2 ms and 1.5 MHz time and frequency resolutions, as its Level 1A data. This paper presents important spectral and temporal properties of the radio frequency interference (RFI) in the protected portion of L-band using SMAP Level 1A data. Maximum and average bandwidth and duration of RFI signals, average RFI-free spectrum availability, and variations in such properties between ascending and descending satellite orbits have been reported across the world. The average bandwidth and duration of individual RFI sources have been found to be usually less than 4.5 MHz and 4.8 ms; and the average RFI-free spectrum is larger than 20 MHz in most regions with exceptions over the Middle East and Central and Eastern Asia. It has also been shown that, the bandwidth and duration of RFI signals can vary as much as 10 MHz and 10 ms, respectively, between ascending and descending orbits over certain locations. Furthermore, to identify frequencies susceptible to RFI contamination in the protected portion of L-band, observed RFI signals have been assigned to individual 1.5 MHz SMAP channels according to their frequencies. It has been demonstrated that, contrary to common perception, the center of the protected portion can be as RFI contaminated as its edges. Finally, there have been no significant correlations noted among different RFI properties such as amplitude, bandwidth, and duration within the 1400–1424 MHz ban

    First Demonstration of Space-Borne Polarization Coherence Tomography for Characterizing Hyrcanian Forest Structural Diversity

    Get PDF
    Structural diversity is recognized as a complementary aspect of biological diversity and plays a fundamental role in forest management, conservation, and restoration. Hence, the assessment of structural diversity has become a major effort in the primary international processes, dealing with biodiversity and sustainable forest management. Because of prohibitive costs associated with the ground measurements of forest structure, despite their high accuracy, space-borne polarization coherence tomography (PCT) can introduce an alternative approach given its ability to provide a vertical reflectivity profile and spatiotemporal resolutions related to detecting forest structural changes. In this study, for the first time ever, the potential of space-borne PCT was evaluated in a broad-leaved Hyrcanian forest of Iran over 308 circular sample plots with an area of 0.1 ha. Two aspects of horizontal structure diversity, including standard deviation of diameter at breast height (σdbh) and the number of trees (N), were predicted as important characteristics in wood production and biomass estimation. In addition, the performance of prediction algorithms, including multiple linear regression (MLR), k-nearest neighbors (k-NN), random forest (RF), and support vector regression (SVR) were compared. We addressed the issue of temporal decorrelation in space-borne PCT utilizing the single-pass TanDEM-X interferometer. The data were acquired in standard DEM mode with single polarization of HH. Consequently, airborne laser scanning (ALS) was used to estimate initial values of height hv and ground phase φ0. The Fourier–Legendre series was used to approximate the relative reflectivity profile of each pixel. To link the relative reflectivity profile averaged within each plot with corresponding ground measurements of σdbh and N, thirteen geometrical and physical parameters were defined (P1−P13). Leave-one-out cross validation (LOOCV) showed a better performance of k-NN than the other algorithms in predicting σdbh and N. It resulted in a relative root mean square error (rRMSE) of 32.80%, mean absolute error (MAE) of 4.69 cm, and R2* of 0.25 for σdbh, whereas only 22% of the variation in N was explained using the PCT algorithm with an rRMSE of 41.56%. This study revealed promising results utilizing TanDEM-X data even though the accuracy is still limited. Hence, an entire assessment of the used framework in characterizing the reflectivity profile and the possible effect of the scale is necessary for future studies

    First Demonstration of Space-Borne Polarization Coherence Tomography for Characterizing Hyrcanian Forest Structural Diversity

    Get PDF
    Structural diversity is recognized as a complementary aspect of biological diversity and plays a fundamental role in forest management, conservation, and restoration. Hence, the assessment of structural diversity has become a major effort in the primary international processes, dealing with biodiversity and sustainable forest management. Because of prohibitive costs associated with the ground measurements of forest structure, despite their high accuracy, space-borne polarization coherence tomography (PCT) can introduce an alternative approach given its ability to provide a vertical reflectivity profile and spatiotemporal resolutions related to detecting forest structural changes. In this study, for the first time ever, the potential of space-borne PCT was evaluated in a broad-leaved Hyrcanian forest of Iran over 308 circular sample plots with an area of 0.1 ha. Two aspects of horizontal structure diversity, including standard deviation of diameter at breast height (σdbh) and the number of trees (N), were predicted as important characteristics in wood production and biomass estimation. In addition, the performance of prediction algorithms, including multiple linear regression (MLR), k-nearest neighbors (k-NN), random forest (RF), and support vector regression (SVR) were compared. We addressed the issue of temporal decorrelation in space-borne PCT utilizing the single-pass TanDEM-X interferometer. The data were acquired in standard DEM mode with single polarization of HH. Consequently, airborne laser scanning (ALS) was used to estimate initial values of height hv and ground phase φ0. The Fourier–Legendre series was used to approximate the relative reflectivity profile of each pixel. To link the relative reflectivity profile averaged within each plot with corresponding ground measurements of σdbh and N, thirteen geometrical and physical parameters were defined (P1−P13). Leave-one-out cross validation (LOOCV) showed a better performance of k-NN than the other algorithms in predicting σdbh and N. It resulted in a relative root mean square error (rRMSE) of 32.80%, mean absolute error (MAE) of 4.69 cm, and R2* of 0.25 for σdbh, whereas only 22% of the variation in N was explained using the PCT algorithm with an rRMSE of 41.56%. This study revealed promising results utilizing TanDEM-X data even though the accuracy is still limited. Hence, an entire assessment of the used framework in characterizing the reflectivity profile and the possible effect of the scale is necessary for future studies
    corecore