54 research outputs found

    Real-time Monitoring of Low Voltage Grids using Adaptive Smart Meter Data Collection

    Get PDF

    On the calculation of time alignment errors in data management platforms for distribution grid data

    Get PDF
    The operation and planning of distribution grids require the joint processing of measurements from different grid locations. Since measurement devices in low- and medium-voltage grids lack precise clock synchronization, it is important for data management platforms of distribution system operators to be able to account for the impact of nonideal clocks on measurement data. This paper formally introduces a metric termed Additive Alignment Error to capture the impact of misaligned averaging intervals of electrical measurements. A trace-driven approach for retrieval of this metric would be computationally costly for measurement devices, and therefore, it requires an online estimation procedure in the data collection platform. To overcome the need of transmission of high-resolution measurement data, this paper proposes and assesses an extension of a Markov-modulated process to model electrical traces, from which a closed-form matrix analytic formula for the Additive Alignment Error is derived. A trace-driven assessment confirms the accuracy of the model-based approach. In addition, the paper describes practical settings where the model can be utilized in data management platforms with significant reductions in computational demands on measurement devices

    Detection of DoS Attacks Using ARFIMA Modeling of GOOSE Communication in IEC 61850 Substations

    Get PDF
    Integration of Information and Communication Technology (ICT) in modern smart grids (SGs) offers many advantages including the use of renewables and an effective way to protect, control and monitor the energy transmission and distribution. To reach an optimal operation of future energy systems, availability, integrity and confidentiality of data should be guaranteed. Research on the cyber-physical security of electrical substations based on IEC 61850 is still at an early stage. In the present work, we first model the network traffic data in electrical substations, then, we present a statistical Anomaly Detection (AD) method to detect Denial of Service (DoS) attacks against the Generic Object Oriented Substation Event (GOOSE) network communication. According to interpretations on the self-similarity and the Long-Range Dependency (LRD) of the data, an Auto-Regressive Fractionally Integrated Moving Average (ARFIMA) model was shown to describe well the GOOSE communication in the substation process network. Based on this ARFIMA-model and in view of cyber-physical security, an effective model-based AD method is developed and analyzed. Two variants of the statistical AD considering statistical hypothesis testing based on the Generalized Likelihood Ratio Test (GLRT) and the cumulative sum (CUSUM) are presented to detect flooding attacks that might affect the availability of the data. Our work presents a novel AD method, with two different variants, tailored to the specific features of the GOOSE traffic in IEC 61850 substations. The statistical AD is capable of detecting anomalies at unknown change times under the realistic assumption of unknown model parameters. The performance of both variants of the AD method is validated and assessed using data collected from a simulation case study. We perform several Monte-Carlo simulations under different noise variances. The detection delay is provided for each detector and it represents the number of discrete time samples after which an anomaly is detected. In fact, our statistical AD method with both variants (CUSUM and GLRT) has around half the false positive rate and a smaller detection delay when compared with two of the closest works found in the literature. Our AD approach based on the GLRT detector has the smallest false positive rate among all considered approaches. Whereas, our AD approach based on the CUSUM test has the lowest false negative rate thus the best detection rate. Depending on the requirements as well as the costs of false alarms or missed anomalies, both variants of our statistical detection method can be used and are further analyzed using composite detection metrics

    Security analytics of large scale streaming data

    Get PDF

    Performance of the 5th generation indoor wireless technologies-empirical study

    Get PDF
    The evolution of 5th generation (5G) cellular technology has introduced several enhancements and provides better performance compared to previous generations. To understand the real capabilities, the importance of the empirical studies is significant to also understand the possible limitations. This is very important especially from the service and use case point of view. Several test sites exist around the globe for introducing, testing, and evaluating new features, use cases, and performance in restricted and secure environments alongside the commercial operators. Test sites equipped with the standard technology are the perfect places for performing deep analysis of the latest wireless and cellular technologies in real operating environments. The testing sites provide valuable information with sophisticated quality of service (QoS) indicators when the 5G vertical use cases are evaluated using the actual devices in the carrier grade network. In addition, the Wi-Fi standards are constantly evolving toward higher bit rates and reduced latency, and their usage in 5G dedicated verticals can even improve performance, especially when lower coverage is sufficient. This work presents the detailed comparative measurements between Wi-Fi 6 and 5G New Radio (NR) performance in indoor facilities and extensive results carried out in 5G and beyond test site located in Finland. The results gathered from the extensive test sets indicate that the Wi-Fi 6 can outperform the 5G in the indoor environment in terms of throughput and latency when distance and coverage do not increase enormously. In addition, the usage of wireless technologies allows improved uplink performance, which is usually more limited in cellular networks. The gained results of our measurements provide valuable information for designing, developing, and implementing the requirements for the next-generation wireless applications

    Detecting and mitigating adversarial examples in regression tasks: A photovoltaic power generation forecasting case study

    Get PDF
    With data collected by Internet of Things sensors, deep learning (DL) models can forecast the generation capacity of photovoltaic (PV) power plants. This functionality is especially relevant for PV power operators and users as PV plants exhibit irregular behavior related to environmental conditions. However, DL models are vulnerable to adversarial examples, which may lead to increased predictive error and wrong operational decisions. This work proposes a new scheme to detect adversarial examples and mitigate their impact on DL forecasting models. This approach is based on one-class classifiers and features extracted from the data inputted to the forecasting models. Tests were performed using data collected from a real-world PV power plant along with adversarial samples generated by the Fast Gradient Sign Method under multiple attack patterns and magnitudes. One-class Support Vector Machine and Local Outlier Factor were evaluated as detectors of attacks to Long-Short Term Memory and Temporal Convolutional Network forecasting models. According to the results, the proposed scheme showed a high capability of detecting adversarial samples with an average F1-score close to 90%. Moreover, the detection and mitigation approach strongly reduced the prediction error increase caused by adversarial samples

    Automation of Smart Grid operations through spatio-temporal data-driven systems

    Get PDF
    • …
    corecore