57 research outputs found

    Logic Programming and Machine Ethics

    Get PDF
    Transparency is a key requirement for ethical machines. Verified ethical behavior is not enough to establish justified trust in autonomous intelligent agents: it needs to be supported by the ability to explain decisions. Logic Programming (LP) has a great potential for developing such perspective ethical systems, as in fact logic rules are easily comprehensible by humans. Furthermore, LP is able to model causality, which is crucial for ethical decision making.Comment: In Proceedings ICLP 2020, arXiv:2009.09158. Invited paper for the ICLP2020 Panel on "Machine Ethics". arXiv admin note: text overlap with arXiv:1909.0825

    Towards generalizable neuro-symbolic reasoners

    Get PDF
    Doctor of PhilosophyDepartment of Computer ScienceMajor Professor Not ListedSymbolic knowledge representation and reasoning and deep learning are fundamentally different approaches to artificial intelligence with complementary capabilities. The former are transparent and data-efficient, but they are sensitive to noise and cannot be applied to non-symbolic domains where the data is ambiguous. The latter can learn complex tasks from examples, are robust to noise, but are black boxes; require large amounts of --not necessarily easily obtained-- data, and are slow to learn and prone to adversarial examples. Either paradigm excels at certain types of problems where the other paradigm performs poorly. In order to develop stronger AI systems, integrated neuro-symbolic systems that combine artificial neural networks and symbolic reasoning are being sought. In this context, one of the fundamental open problems is how to perform logic-based deductive reasoning over knowledge bases by means of trainable artificial neural networks. Over the course of this dissertation, we provide a brief summary of our recent efforts to bridge the neural and symbolic divide in the context of deep deductive reasoners. More specifically, We designed a novel way of conducting neuro-symbolic through pointing to the input elements. More importantly we showed that the proposed approach is generalizable across new domain and vocabulary demonstrating symbol-invariant zero-shot reasoning capability. Furthermore, We have demonstrated that a deep learning architecture based on memory networks and pre-embedding normalization is capable of learning how to perform deductive reason over previously unseen RDF KGs with high accuracy. We are applying these models on Resource Description Framework (RDF), first-order logic, and the description logic EL+ respectively. Throughout this dissertation we will discuss strengths and limitations of these models particularly in term of accuracy, scalability, transferability, and generalizabiliy. Based on our experimental results, pointer networks perform remarkably well across multiple reasoning tasks while outperforming the previously reported state of the art by a significant margin. We observe that the Pointer Networks preserve their performance even when challenged with knowledge graphs of the domain/vocabulary it has never encountered before. To our knowledge, this work is the first attempt to reveal the impressive power of pointer networks for conducting deductive reasoning. Similarly, we show that memory networks can be trained to perform deductive RDFS reasoning with high precision and recall. The trained memory network's capabilities in fact transfer to previously unseen knowledge bases. Finally will talk about possible modifications to enhance desirable capabilities. Altogether, these research topics, resulted in a methodology for symbol-invariant neuro-symbolic reasoning

    AI for the Common Good?! Pitfalls, challenges, and Ethics Pen-Testing

    Full text link
    Recently, many AI researchers and practitioners have embarked on research visions that involve doing AI for "Good". This is part of a general drive towards infusing AI research and practice with ethical thinking. One frequent theme in current ethical guidelines is the requirement that AI be good for all, or: contribute to the Common Good. But what is the Common Good, and is it enough to want to be good? Via four lead questions, I will illustrate challenges and pitfalls when determining, from an AI point of view, what the Common Good is and how it can be enhanced by AI. The questions are: What is the problem / What is a problem?, Who defines the problem?, What is the role of knowledge?, and What are important side effects and dynamics? The illustration will use an example from the domain of "AI for Social Good", more specifically "Data Science for Social Good". Even if the importance of these questions may be known at an abstract level, they do not get asked sufficiently in practice, as shown by an exploratory study of 99 contributions to recent conferences in the field. Turning these challenges and pitfalls into a positive recommendation, as a conclusion I will draw on another characteristic of computer-science thinking and practice to make these impediments visible and attenuate them: "attacks" as a method for improving design. This results in the proposal of ethics pen-testing as a method for helping AI designs to better contribute to the Common Good.Comment: to appear in Paladyn. Journal of Behavioral Robotics; accepted on 27-10-201

    An AI Chatbot for Explaining Deep Reinforcement Learning Decisions of Service-oriented Systems

    Full text link
    Deep Reinforcement Learning (Deep RL) is increasingly used to cope with the open-world assumption in service-oriented systems. Deep RL was successfully applied to problems such as dynamic service composition, job scheduling, and offloading, as well as service adaptation. While Deep RL offers many benefits, understanding the decision-making of Deep RL is challenging because its learned decision-making policy essentially appears as a black box. Yet, understanding the decision-making of Deep RL is key to help service developers perform debugging, support service providers to comply with relevant legal frameworks, and facilitate service users to build trust. We introduce Chat4XAI to facilitate the understanding of the decision-making of Deep RL by providing natural-language explanations. Compared with visual explanations, the reported benefits of natural-language explanations include better understandability for non-technical users, increased user acceptance and trust, as well as more efficient explanations. Chat4XAI leverages modern AI chatbot technology and dedicated prompt engineering. Compared to earlier work on natural-language explanations using classical software-based dialogue systems, using an AI chatbot eliminates the need for eliciting and defining potential questions and answers up-front. We prototypically realize Chat4XAI using OpenAI's ChatGPT API and evaluate the fidelity and stability of its explanations using an adaptive service exemplar.Comment: To be published at 21st Int'l Conference on Service-Oriented Computing (ICSOC 2023), Rome, Italy, November 28-December 1, 2023, ser. LNCS, F. Monti, S. Rinderle-Ma, A. Ruiz Cortes, Z. Zheng, M. Mecella, Eds., Springer, 202

    Tacit knowledge elicitation process for industry 4.0

    Get PDF
    Manufacturers migrate their processes to Industry 4.0, which includes new technologies for improving productivity and efficiency of operations. One of the issues is capturing, recreating, and documenting the tacit knowledge of the aging workers. However, there are no systematic procedures to incorporate this knowledge into Enterprise Resource Planning systems and maintain a competitive advantage. This paper describes a solution proposal for a tacit knowledge elicitation process for capturing operational best practices of experienced workers in industrial domains based on a mix of algorithmic techniques and a cooperative game. We use domain ontologies for Industry 4.0 and reasoning techniques to discover and integrate new facts from textual sources into an Operational Knowledge Graph. We describe a concepts formation iterative process in a role game played by human and virtual agents through socialization and externalization for knowledge graph refinement. Ethical and societal concerns are discussed as well
    • …
    corecore