112 research outputs found

    Past Challenges and the Future of Discrete Event Simulation

    Get PDF
    The American scientist Carl Sagan once said: “You have to know the past to understand the present.” We argue that having a meaningful dialogue on the future of simulation requires a baseline understanding of previous discussions on its future. For this paper, we conduct a review of the discrete event simulation (DES) literature that focuses on its future to understand better the path that DES has been following, both in terms of who is using simulation and what directions they think DES should take. Our review involves a qualitative literature review of DES and a quantitative bibliometric analysis of the Modeling and Simulation (M&S) literature. The results from the bibliometric study imply that demographics of the M&S community are rapidly changing, both in terms of the nations that use M&S and the academic disciplines from which new simulationists hail. This change in demographics has the potential to help aid the community face some of its future challenges. Our qualitative literature review indicates that DES still faces some significant challenges: these include integrating human behavior; using simulation for exploration, not replication; determining return on investment; and communication issues across a splitting community

    Simulation-Based Decision Support System to Improve Material Flow of a Textile Company

    Get PDF
    To remain competitive, companies must continuously improve the processes at hand, be they administrative, production, or logistics. The objective of the study described in this paper was to develop a decision-making tool based on a simulation model to support the production of knits and damask fabrics. The tool was used to test different control strategies for material flow, from the raw material warehouse to the finished product warehouse, and thus can also be used to evaluate the impacts of these strategies on the productivity. The data upon which the decision support tool was built were collected from five sectors of the plant: the raw material warehouse, knit production, damask production, finishing work, and the finished product warehouse. The decision support tool met the objectives of the project, with all five strategies developed showing positive results. Knit and damask production rates increased by up to 8% and 44%, respectively, and a reduction of 75% was observed in the waiting time on the point of entry to the finishing work area, compared to the company’s existing system.info:eu-repo/semantics/publishedVersio

    A Framework for Interactive Development of Simulation Models with Strategical–Tactical–Operational Layering Applied to the Logistics of Bulk Commodities

    Get PDF
    CONTEXT–Simulation modelling provides insight into hidden dynamics underlying business processes. However, an accurate understanding of operations is necessary for fidelity of the model. This is challenging because of the need to extract the tacit nature of operational knowledge and facilitate the representation of complex processes and decision-making patterns that do not depend on classes, objects, and instantiations. Commonly used industrial simulation, such as Arena®, does not natively support the object-oriented constructs available for software development. OBJECTIVE–This paper proposes a method for developing simulation models that allow process-owners and modellers to jointly build a series of evolutionary models that improve conceptual validity of the executable computer model. APPROACH-Software and Systems Engineering principles were adapted to develop a framework that allows a systematic transition from conceptual to executable model, which allows multiple perspectives to be simultaneously considered. The framework was applied to a logistics case study in a bulk commodities distribution context. FINDINGS–The method guided the development of a set of models that served as scaffolds to allow the natural flow of ideas from a natural language domain to Arena® code. In doing so, modeller and process-owners at strategic, tactical, and operational levels developed and validated the simulation model. ORIGINALITY—This work provides a framework for structuring the development of simulation models. The framework allows the use of non-object-oriented constructs, making it applicable to SIMAN-based simulation languages and packages as Arena®

    Barcelona Virtual Mobility Lab: the multimodal transport simulation testbed for emerging mobility concepts evaluation

    Get PDF
    New sustainable mobility concepts and smart resilient ideas are arising every day. However, there is not an easy way to bring these ideas into reality, or to test how good they are as mobility solutions. Virtual Mobility Lab offers the opportunity to evaluate the impact of new mobility concepts before taking them to the real world. In this work, a multimodal macroscopic traffic simulation model of the Barcelona Metropolitan Area is developed, including both public and private transport network. This paper explains the remarkable features developed for this model, such as the network hierarchy and the multimodal public network interchangers, allowing demand to exchange between public transportation modes along their origin-destination paths.Peer ReviewedPostprint (author's final draft

    SISO Space Reference FOM - Tools and Testing

    Get PDF
    The Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (SpaceFOM) version 1.0 is nearing completion. Earlier papers have described the use of the High Level Architecture (HLA) in Space simulation as well as technical aspects of the SpaceFOM. This paper takes a look at different SpaceFOM tools and how they were used during the development and testing of the standard.The first organizations to develop SpaceFOM-compliant federates for SpaceFOM development and testing were NASA's Johnson Space Center (JSC), the University of Calabria (UNICAL), and Pitch Technologies.JSC is one of NASA's lead centers for human space flight. Much of the core distributed simulation technology development, specifically associated with the SpaceFOM, is done by the NASA Exploration Systems Simulations (NExSyS) team. One of NASA's principal simulation development tools is the Trick Simulation Environment. NASA's NExSyS team has been modifying and using Trick and TrickHLA to help develop and test the SpaceFOM.The System Modeling And Simulation Hub Laboratory (SMASH-Lab) at UNICAL has developed the Simulation Exploration Experience (SEE) HLA Starter kit, that has been used by most SEE teams involved in the distributed simulation of a Moon base. It is particularly useful for the development of federates that are compatible with the SpaceFOM. The HLA Starter Kit is a Java based tool that provides a well-structured framework to simplify the formulation, generation, and execution of SpaceFOM-compliant federates.Pitch Technologies, a company specializing in distributed simulation, is utilizing a number of their existing HLA tools to support development and testing of the SpaceFOM. In addition to the existing tools, Pitch has developed a few SpaceFOM specific federates: Space Master for managing the initialization, execution and pacing of any SpaceFOM federation; EarthEnvironment, a simple Root Reference Publisher; and Space Monitor, a graphical tool for monitoring reference frames and physical entities.Early testing of the SpaceFOM was carried out in the SEE university outreach program, initiated in SISO. Students were given a subset of the FOM, that was later extended. Sample federates were developed and frameworks were developed or adapted to the early FOM versions.As drafts of the standard matured, testing was performed using federates from government, industry, and academia. By mixing federates developed by different teams the standard could be tested with respect to functional correctness, robustness and clarity.These frameworks and federates have been useful when testing and verifying the design of the standard. In addition to this, they have since formed a starting point for developing SpaceFOM-compliant federations in several projects, for example for NASA, ESA as well as SEE

    Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications

    Full text link
    [EN] The need for effective freight and human transportation systems has consistently increased during the last decades, mainly due to factors such as globalization, e-commerce activities, and mobility requirements. Traditionally, transportation systems have been designed with the main goal of reducing their monetary cost while offering a specified quality of service. During the last decade, however, sustainability concepts are also being considered as a critical component of transportation systems, i.e., the environmental and social impact of transportation activities have to be taken into account when managers and policy makers design and operate modern transportation systems, whether these refer to long-distance carriers or to metropolitan areas. This paper reviews the existing work on different scientific methodologies that are being used to promote Sustainable Transportation Systems (STS), including simulation, optimization, machine learning, and fuzzy sets. This paper discusses how each of these methodologies have been employed to design and efficiently operate STS. In addition, the paper also provides a classification of common challenges, best practices, future trends, and open research lines that might be useful for both researchers and practitioners.This work has been partially supported by the Spanish Ministry of Science, Innovation, and Universities (PID2019-111100RB-C21-C22/AEI/10.13039/501100011033, RED2018-102642-T) and the SEPIE Erasmus+ Program (2019-I-ES01-KA103-062602), and the IoF2020-H2020 (731884) project.Torre-Martínez, MRDL.; Corlu, CG.; Faulin, J.; Onggo, BS.; Juan-Pérez, ÁA. (2021). Simulation, optimization, and machine learning in sustainable transportation systems: Models and applications. Sustainability. 13(3):1-21. https://doi.org/10.3390/su1303155112113

    Applications of Agent-Based Modeling (ABM) in Enhancing Facility Operation and Management

    Full text link
    Agent-based modeling (ABM), as a relatively new simulation technique, has recently gained in popularity in the civil engineering domain due to its uniquely advantageous features. Among many civil engineering applications, ABM has been applied to facility operation and management, such as energy consumption management, as well as the enhancement of maintenance and repair processes. The former studies used ABM to manage energy consumption through simulating human energy-related behaviors and their interactions with facilities, as well as electrical, heating, and cooling systems and appliances, while the latter used ABM to enhance maintenance process through facilitating coordination, negotiation, and decision making between facility managers, service providers, and repair workers. The present study aims to provide a short qualitative review on the most recent applications of ABM in the above-mentioned areas. Based on the review and follow-up analysis, the study identifies the advantages, disadvantages, and limitations of ABM applications to facility operation and management, and offers several potential future research topics in the hope of filling the existing literature gaps

    A traffic simulation tool for assessing smart city policies (CitScale)

    Get PDF
    Over the last century, cities have developed as a function of increased usage of automobiles as the standard transport mode. The number of cars increased along with the population as highways and parking spots became essential in city planning. Now, there is more focus on how the existing infrastructure could be used as efficiently as possible rather than increasing capacity by merely building new roads. An important part of traffic planning is a sustainable transport system, which thereby reduces congestion and emissions by using the available capacity in a more efficient way. Traffic simulation models are tools for assessing new mobility solutions and analysing changes in the infrastructure, such as rearranging intersections and building new roads. Transportation is undergoing a profound and significant transformation as it seeks to fulfil the promise of connected mobility for people and goods while limiting its carbon footprint. Physical changes to the road network mean large investments that must be comprehensively considered before acting. Modelling different scenarios of infrastructural changes allows making forecasts without any physical changes. Autonomous vehicles are potentially changing the economics of ownership as well as the use of the transportation networks, which will likely accelerate trends towards greater use of app-based ride hailing and/or sharing by private transportation network companies. American and European cities are seeing a rise in several potential business models with varying degrees of ride sharing and public vs. private involvement in delivering mobility services (MaaS). Implications for transit agencies and mobility service providers must be evaluated, and this can be done by traffic simulation models that provide a model-based framework for evaluating the mobility impact of new services.Peer ReviewedPostprint (author's final draft

    Simulation, Science, and Stakeholders: Challenges and Opportunities for Modelling Solutions to Societal Problems

    Get PDF
    The article outlines an approach to computer modelling called “human simulation,” whose development has been explicitly oriented towards addressing societal problems through transdisciplinary efforts involving stakeholders, change agents, policy professionals, subject matter experts, and computer scientists. It describes the steps involved in the creation and exploration of the “insight space” of policy-oriented artificial societies, which include both analysing societal problems and designing societal solutions. A case study is provided, based on an (ongoing) research project studying “emotional contagion” related to misinformation, stigma, and anxiety in the wake of the COVID-19 pandemic, along with lessons learned about some of the challenges and opportunities facing scientists and stakeholders trying to simulate solutions to complex societal problems.publishedVersio
    corecore