12 research outputs found

    MLCAD: A Survey of Research in Machine Learning for CAD Keynote Paper

    Get PDF

    Variability and power enhancement of current controlled resistive switching devices

    Get PDF
    Producción CientíficaIn this work, the unipolar resistive switching behaviour of Ni/HfO2/Si(n+) devices is studied. The structures are characterized using both current and voltage sweeps, with the device resistance and its cycle-to-cycle variability being analysed in each case. Experimental measurements indicate a clear improvement on resistance states stability when using current sweeps to induce both set and reset processes. Moreover, it has been found that using current to induce these transitions is more efficient than using voltage sweeps, as seen when analysing the device power consumption. The same results are obtained for devices with a Ni top electrode and a bilayer or pentalayer of HfO2/Al2O3 as dielectric. Finally, kinetic Monte Carlo and compact modelling simulation studies are performed to shed light on the experimental results.Junta de Andalucía - FEDER (B-TIC-624-UGR20)Consejo Superior de Investigaciones Científicas (CSIC) (project 20225AT012)Ramón y Cajal (grant RYC2020-030150-I

    Variability and power enhancement of current controlled resistive switching devices

    Get PDF
    characterized using both current and voltage sweeps, with the device resistance and its cycle-to-cycle variability being analysed in each case. Experimental measurements indicate a clear improvement on resistance states stability when using current sweeps to induce both set and reset processes. Moreover, it has been found that using current to induce these transitions is more efficient than using voltage sweeps, as seen when analysing the device power consumption. The same results are obtained for devices with a Ni top electrode and a bilayer or pentalayer of HfO2/Al2O3 as dielectric. Finally, kinetic Monte Carlo and compact modelling simulation studies are performed to shed light on the experimental resultsConsejería de Conocimiento, Investigaci´on y Universidad, Junta de Andalucía (Spain)FEDER program for the project B-TIC-624-UGR20Spanish Consejo Superior de Investigaciones Científicas (CSIC) for the intramural project 20225AT012Ramón y Cajal grant No. RYC2020-030150-I

    Characterization and optimization of network traffic in cortical simulation

    Get PDF
    Considering the great variety of obstacles the Exascale systems have to face in the next future, a deeper attention will be given in this thesis to the interconnect and the power consumption. The data movement challenge involves the whole hierarchical organization of components in HPC systems — i.e. registers, cache, memory, disks. Running scientific applications needs to provide the most effective methods of data transport among the levels of hierarchy. On current petaflop systems, memory access at all the levels is the limiting factor in almost all applications. This drives the requirement for an interconnect achieving adequate rates of data transfer, or throughput, and reducing time delays, or latency, between the levels. Power consumption is identified as the largest hardware research challenge. The annual power cost to operate the system would be above 2.5 B$ per year for an Exascale system using current technology. The research for alternative power-efficient computing device is mandatory for the procurement of the future HPC systems. In this thesis, a preliminary approach will be offered to the critical process of co-design. Co-desing is defined as the simultaneos design of both hardware and software, to implement a desired function. This process both integrates all components of the Exascale initiative and illuminates the trade-offs that must be made within this complex undertaking

    Miniaturized Transistors

    Get PDF
    What is the future of CMOS? Sustaining increased transistor densities along the path of Moore's Law has become increasingly challenging with limited power budgets, interconnect bandwidths, and fabrication capabilities. In the last decade alone, transistors have undergone significant design makeovers; from planar transistors of ten years ago, technological advancements have accelerated to today's FinFETs, which hardly resemble their bulky ancestors. FinFETs could potentially take us to the 5-nm node, but what comes after it? From gate-all-around devices to single electron transistors and two-dimensional semiconductors, a torrent of research is being carried out in order to design the next transistor generation, engineer the optimal materials, improve the fabrication technology, and properly model future devices. We invite insight from investigators and scientists in the field to showcase their work in this Special Issue with research papers, short communications, and review articles that focus on trends in micro- and nanotechnology from fundamental research to applications

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Advanced analog layout design automation in compliance with density uniformity

    Get PDF
    To fabricate a reliable integrated circuit chip, foundries follow specific design rules and layout processing techniques. One of the parameters, which affect circuit performance and final electronic product quality, is the variation of thickness for each semiconductor layer within the fabricated chips. The thickness is closely dependent on the density of geometric features on that layer. Therefore, to ensure consistent thickness, foundries normally have to seriously control distribution of the feature density on each layer by using post-processing operations. In this research, the methods of controlling feature density distribution on different layers of an analog layout during the process of layout migration from an old technology to a new one or updated design specifications in the same technology have been investigated. We aim to achieve density-uniformity-aware layout retargeting for facilitating manufacturing process in the advanced technologies. This can offer an advantage right to the design stage for the designers to evaluate the effects of applying density uniformity to their drafted layouts, which are otherwise usually done by the foundries at the final manufacturing stage without considering circuit performance. Layout modification for density uniformity includes component position change and size modification, which may induce crosstalk noise caused by extra parasitic capacitance. To effectively control this effect, we have also investigated and proposed a simple yet accurate analytic method to model the parasitic capacitance on multi-layer VLSI chips. Supported by this capacitance modeling research, a unique methodology to deal with density-uniformity-aware analog layout retargeting with the capability of parasitic capacitance control has been presented. The proposed operations include layout geometry position rearrangement, interconnect size modification, and extra dummy fill insertion for enhancing layout density uniformity. All of these operations are holistically coordinated by a linear programming optimization scheme. The experimental results demonstrate the efficacy of the proposed methodology compared to the popular digital solutions in terms of minimum density variation and acute parasitic capacitance control

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Hardware / Software Architectural and Technological Exploration for Energy-Efficient and Reliable Biomedical Devices

    Get PDF
    Nowadays, the ubiquity of smart appliances in our everyday lives is increasingly strengthening the links between humans and machines. Beyond making our lives easier and more convenient, smart devices are now playing an important role in personalized healthcare delivery. This technological breakthrough is particularly relevant in a world where population aging and unhealthy habits have made non-communicable diseases the first leading cause of death worldwide according to international public health organizations. In this context, smart health monitoring systems termed Wireless Body Sensor Nodes (WBSNs), represent a paradigm shift in the healthcare landscape by greatly lowering the cost of long-term monitoring of chronic diseases, as well as improving patients' lifestyles. WBSNs are able to autonomously acquire biological signals and embed on-node Digital Signal Processing (DSP) capabilities to deliver clinically-accurate health diagnoses in real-time, even outside of a hospital environment. Energy efficiency and reliability are fundamental requirements for WBSNs, since they must operate for extended periods of time, while relying on compact batteries. These constraints, in turn, impose carefully designed hardware and software architectures for hosting the execution of complex biomedical applications. In this thesis, I develop and explore novel solutions at the architectural and technological level of the integrated circuit design domain, to enhance the energy efficiency and reliability of current WBSNs. Firstly, following a top-down approach driven by the characteristics of biomedical algorithms, I perform an architectural exploration of a heterogeneous and reconfigurable computing platform devoted to bio-signal analysis. By interfacing a shared Coarse-Grained Reconfigurable Array (CGRA) accelerator, this domain-specific platform can achieve higher performance and energy savings, beyond the capabilities offered by a baseline multi-processor system. More precisely, I propose three CGRA architectures, each contributing differently to the maximization of the application parallelization. The proposed Single, Multi and Interleaved-Datapath CGRA designs allow the developed platform to achieve substantial energy savings of up to 37%, when executing complex biomedical applications, with respect to a multi-core-only platform. Secondly, I investigate how the modeling of technology reliability issues in logic and memory components can be exploited to adequately adjust the frequency and supply voltage of a circuit, with the aim of optimizing its computing performance and energy efficiency. To this end, I propose a novel framework for workload-dependent Bias Temperature Instability (BTI) impact analysis on biomedical application results quality. Remarkably, the framework is able to determine the range of safe circuit operating frequencies without introducing worst-case guard bands. Experiments highlight the possibility to safely raise the frequency up to 101% above the maximum obtained with the classical static timing analysis. Finally, through the study of several well-known biomedical algorithms, I propose an approach allowing energy savings by dynamically and unequally protecting an under-powered data memory in a new way compared to regular error protection schemes. This solution relies on the Dynamic eRror compEnsation And Masking (DREAM) technique that reduces by approximately 21% the energy consumed by traditional error correction codes
    corecore