74 research outputs found

    Towards Next Generation Teaching, Learning, and Context-Aware Applications for Higher Education: A Review on Blockchain, IoT, Fog and Edge Computing Enabled Smart Campuses and Universities

    Get PDF
    [Abstract] Smart campuses and smart universities make use of IT infrastructure that is similar to the one required by smart cities, which take advantage of Internet of Things (IoT) and cloud computing solutions to monitor and actuate on the multiple systems of a university. As a consequence, smart campuses and universities need to provide connectivity to IoT nodes and gateways, and deploy architectures that allow for offering not only a good communications range through the latest wireless and wired technologies, but also reduced energy consumption to maximize IoT node battery life. In addition, such architectures have to consider the use of technologies like blockchain, which are able to deliver accountability, transparency, cyber-security and redundancy to the processes and data managed by a university. This article reviews the state of the start on the application of the latest key technologies for the development of smart campuses and universities. After defining the essential characteristics of a smart campus/university, the latest communications architectures and technologies are detailed and the most relevant smart campus deployments are analyzed. Moreover, the use of blockchain in higher education applications is studied. Therefore, this article provides useful guidelines to the university planners, IoT vendors and developers that will be responsible for creating the next generation of smart campuses and universities.Xunta de Galicia; ED431C 2016-045Xunta de Galicia; ED431G/01Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    THOR: A Hybrid Recommender System for the Personalized Travel Experience

    Get PDF
    One of the travelers’ main challenges is that they have to spend a great effort to find and choose the most desired travel offer(s) among a vast list of non-categorized and non-personalized items. Recommendation systems provide an effective way to solve the problem of information overload. In this work, we design and implement “The Hybrid Offer Ranker” (THOR), a hybrid, personalized recommender system for the transportation domain. THOR assigns every traveler a unique contextual preference model built using solely their personal data, which makes the model sensitive to the user’s choices. This model is used to rank travel offers presented to each user according to their personal preferences. We reduce the recommendation problem to one of binary classification that predicts the probability with which the traveler will buy each available travel offer. Travel offers are ranked according to the computed probabilities, hence to the user’s personal preference model. Moreover, to tackle the cold start problem for new users, we apply clustering algorithms to identify groups of travelers with similar profiles and build a preference model for each group. To test the system’s performance, we generate a dataset according to some carefully designed rules. The results of the experiments show that the THOR tool is capable of learning the contextual preferences of each traveler and ranks offers starting from those that have the higher probability of being selected

    RV4JaCa - Runtime Verification for Multi-Agent Systems

    Get PDF
    This paper presents a Runtime Verification (RV) approach for Multi-Agent Systems (MAS) using the JaCaMo framework. Our objective is to bring a layer of security to the MAS. This layer is capable of controlling events during the execution of the system without needing a specific implementation in the behaviour of each agent to recognise the events. MAS have been used in the context of hybrid intelligence. This use requires communication between software agents and human beings. In some cases, communication takes place via natural language dialogues. However, this kind of communication brings us to a concern related to controlling the flow of dialogue so that agents can prevent any change in the topic of discussion that could impair their reasoning. We demonstrate the implementation of a monitor that aims to control this dialogue flow in a MAS that communicates with the user through natural language to aid decision-making in hospital bed allocation

    A Bimodel Algorithm with Data-Divider to Predict Stock Index

    Get PDF
    There is not yet reliable software for stock prediction, because most experts of this area have been trying to predict an exact stock index. Considering that the fluctuation of a stock index usually is no more than 1% in a day, the error between the forecasted and the actual values should be no more than 0.5%. It is too difficult to realize. However, forecasting whether a stock index will rise or fall does not need to be so exact a numerical value. A few scholars noted the fact, but their systems do not yet work very well because different periods of a stock have different inherent laws. So, we should not depend on a single model or a set of parameters to solve the problem. In this paper, we developed a data-divider to divide a set of historical stock data into two parts according to rising period and falling period, training, respectively, two neural networks optimized by a GA. Above all, the data-divider enables us to avoid the most difficult problem, the effect of unexpected news, which could hardly be predicted. Experiments show that the accuracy of our method increases 20% compared to those of traditional methods

    A fast and robust deep convolutional neural networks for complex human activity recognition using smartphone

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. As a significant role in healthcare and sports applications, human activity recognition (HAR) techniques are capable of monitoring humans’ daily behavior. It has spurred the demand for intelligent sensors and has been giving rise to the explosive growth of wearable and mobile devices. They provide the most availability of human activity data (big data). Powerful algorithms are required to analyze these heterogeneous and high-dimension streaming data efficiently. This paper proposes a novel fast and robust deep convolutional neural network structure (FR-DCNN) for human activity recognition (HAR) using a smartphone. It enhances the effectiveness and extends the information of the collected raw data from the inertial measurement unit (IMU) sensors by integrating a series of signal processing algorithms and a signal selection module. It enables a fast computational method for building the DCNN classifier by adding a data compression module. Experimental results on the sampled 12 complex activities dataset show that the proposed FR-DCNN model is the best method for fast computation and high accuracy recognition. The FR-DCNN model only needs 0.0029 s to predict activity in an online way with 95.27% accuracy. Meanwhile, it only takes 88 s (average) to establish the DCNN classifier on the compressed dataset with less precision loss 94.18%

    The Use of Transfer Learning for Activity Recognition in Instances of Heterogeneous Sensing

    Get PDF
    Transfer learning is a growing field that can address the variability of activity recognition problems by reusing the knowledge from previous experiences to recognise activities from different conditions, resulting in the leveraging of resources such as training and labelling efforts. Although integrating ubiquitous sensing technology and transfer learning seem promising, there are some research opportunities that, if addressed, could accelerate the development of activity recognition. This paper presents TL-FmRADLs; a framework that converges the feature fusion strategy with a teacher/learner approach over the active learning technique to automatise the self-training process of the learner models. Evaluation TL-FmRADLs is conducted over InSync; an open access dataset introduced for the first time in this paper. Results show promising effects towards mitigating the insufficiency of labelled data available by enabling the learner model to outperform the teacher’s performance

    Sentiment Analysis in Understanding the Potential of Online News in the Public Health Crisis Response

    Get PDF
    This study analyzes online news disseminated throughout the pre-, during-, and post-intervention periods of the "Syphilis No!" Project, which was developed in Brazil between November 2018 and March 2019. We investigated the influence of sentiment aspects of news to explore their possible relationships with syphilis testing data in response to the syphilis epidemic in Brazil. A dictionary-based technique (VADER) was chosen to perform sentiment analysis considering the Brazilian Portuguese language. Finally, the data collected were used in statistical tests to obtain other indicators, such as correlation and distribution analysis. Of the 627 news items, 198 (31.58%) were classified as a sentiment of security (TP2; stands for the news type 2), whereas 429 (68.42%) were classified as sentiments that instilled vulnerability (TP3; stands for the news type 3). The correlation between the number of syphilis tests and the number of news types TP2 and TP3 was verified from (i) 2015 to 2017 and (ii) 2018 to 2019. For the TP2 type news, in all periods, the p -values were greater than 0.05, thus generating inconclusive results. From 2015 to 2017, there was an ρ = 0.33 correlation between TP3 news and testing data (p -value = 0.04); the years 2018 and 2019 presented a ρ = 0.67 correlation between TP3 news and the number of syphilis tests performed per month, with p -value = 0.0003. In addition, Granger's test was performed between TP3 news and syphilis testing, which resulted in a p -value = 0.002, thus indicating the existence of Granger causality between these time series. By applying natural language processing to sentiment and informational content analysis of public health campaigns, it was found that the most substantial increase in testing was strongly related to attitude-inducing content (TP3)
    • 

    corecore