20 research outputs found

    Multivariate Pointwise Information-Driven Data Sampling and Visualization

    Full text link
    With increasing computing capabilities of modern supercomputers, the size of the data generated from the scientific simulations is growing rapidly. As a result, application scientists need effective data summarization techniques that can reduce large-scale multivariate spatiotemporal data sets while preserving the important data properties so that the reduced data can answer domain-specific queries involving multiple variables with sufficient accuracy. While analyzing complex scientific events, domain experts often analyze and visualize two or more variables together to obtain a better understanding of the characteristics of the data features. Therefore, data summarization techniques are required to analyze multi-variable relationships in detail and then perform data reduction such that the important features involving multiple variables are preserved in the reduced data. To achieve this, in this work, we propose a data sub-sampling algorithm for performing statistical data summarization that leverages pointwise information theoretic measures to quantify the statistical association of data points considering multiple variables and generates a sub-sampled data that preserves the statistical association among multi-variables. Using such reduced sampled data, we show that multivariate feature query and analysis can be done effectively. The efficacy of the proposed multivariate association driven sampling algorithm is presented by applying it on several scientific data sets.Comment: 25 page

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationships between entities in real-world systems with a simple graph is a standard approach. However, reality is better embraced as several interdependent subsystems (or layers). Recently the concept of a multilayer network model has emerged from the field of complex systems. This model can be applied to a wide range of real-world datasets. Examples of multilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domain of graph visualization there are many systems which visualize datasets having many characteristics of multilayer graphs. This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only for researchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as well as those developing systems across application domains. We have explored the visualization literature to survey visualization techniques suitable for multilayer graph visualization, as well as tools, tasks, and analytic techniques from within application domains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future research directions for addressing them

    Graphs from features: tree-based graph layout for feature analysis

    Get PDF
    Feature Analysis has become a very critical task in data analysis and visualization. Graph structures are very flexible in terms of representation and may encode important information on features but are challenging in regards to layout being adequate for analysis tasks. In this study, we propose and develop similarity-based graph layouts with the purpose of locating relevant patterns in sets of features, thus supporting feature analysis and selection. We apply a tree layout in the first step of the strategy, to accomplish node placement and overview based on feature similarity. By drawing the remainder of the graph edges on demand, further grouping and relationships among features are revealed. We evaluate those groups and relationships in terms of their effectiveness in exploring feature sets for data analysis. Correlation of features with a target categorical attribute and feature ranking are added to support the task. Multidimensional projections are employed to plot the dataset based on selected attributes to reveal the effectiveness of the feature set. Our results have shown that the tree-graph layout framework allows for a number of observations that are very important in user-centric feature selection, and not easy to observe by any other available tool. They provide a way of finding relevant and irrelevant features, spurious sets of noisy features, groups of similar features, and opposite features, all of which are essential tasks in different scenarios of data analysis. Case studies in application areas centered on documents, images and sound data demonstrate the ability of the framework to quickly reach a satisfactory compact representation from a larger feature set

    Natural Language Interfaces for Tabular Data Querying and Visualization: A Survey

    Full text link
    The emergence of natural language processing has revolutionized the way users interact with tabular data, enabling a shift from traditional query languages and manual plotting to more intuitive, language-based interfaces. The rise of large language models (LLMs) such as ChatGPT and its successors has further advanced this field, opening new avenues for natural language processing techniques. This survey presents a comprehensive overview of natural language interfaces for tabular data querying and visualization, which allow users to interact with data using natural language queries. We introduce the fundamental concepts and techniques underlying these interfaces with a particular emphasis on semantic parsing, the key technology facilitating the translation from natural language to SQL queries or data visualization commands. We then delve into the recent advancements in Text-to-SQL and Text-to-Vis problems from the perspectives of datasets, methodologies, metrics, and system designs. This includes a deep dive into the influence of LLMs, highlighting their strengths, limitations, and potential for future improvements. Through this survey, we aim to provide a roadmap for researchers and practitioners interested in developing and applying natural language interfaces for data interaction in the era of large language models.Comment: 20 pages, 4 figures, 5 tables. Submitted to IEEE TKD

    Storytelling and Visualization: An Extended Survey

    Get PDF
    Throughout history, storytelling has been an effective way of conveying information and knowledge. In the field of visualization, storytelling is rapidly gaining momentum and evolving cutting-edge techniques that enhance understanding. Many communities have commented on the importance of storytelling in data visualization. Storytellers tend to be integrating complex visualizations into their narratives in growing numbers. In this paper, we present a survey of storytelling literature in visualization and present an overview of the common and important elements in storytelling visualization. We also describe the challenges in this field as well as a novel classification of the literature on storytelling in visualization. Our classification scheme highlights the open and unsolved problems in this field as well as the more mature storytelling sub-fields. The benefits offer a concise overview and a starting point into this rapidly evolving research trend and provide a deeper understanding of this topic

    Artificial Intelligence and Cognitive Computing

    Get PDF
    Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, fĂŒhren zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhĂ€rent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natĂŒrliche Interaktionstechniken als hilfreich fĂŒr die Datenanalyse erwiesen. DarĂŒber hinaus spielt in solchen AnwendungsfĂ€llen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext fĂŒr die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung gefĂŒhrt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion fĂŒr diese oft komplexen Systeme. In meiner Dissertation beschĂ€ftige ich mich mit dieser Herausforderung, indem ich die Interaktion fĂŒr immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von rĂ€umlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann rĂ€umliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen fĂŒr immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. FĂŒr die zweite Frage untersuche ich, wie insbesondere die rĂ€umliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit rĂ€umlichen GerĂ€ten im Vergleich zur Touch-Eingabe, die Verwendung zusĂ€tzlicher mobiler GerĂ€te als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darĂŒber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie rĂ€umliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstĂŒtzen können

    Detection of traffic events from Finnish social media data

    Get PDF
    Social media has gained significant popularity and importance during the past few years and has become an essential part of many people s everyday lives. As social media users write about a broad range of topics, popular social networking sites can serve as a perfect base for various data mining and information extraction applications. One possibility among these could be the real-time detection of unexpected traffic events or anomalies, which could be used to help traffic managers to discover and mitigate problematic spots in a timely manner or to assist passengers with making informed decisions about their travel route. The purpose of this study is to develop a Finnish traffic information system that relies on social media data. The potential of using social network streams in traffic information extraction has been demonstrated in several big cities, but no study has so far investigated the possible use in smaller communities such as towns in Finland. The complexity of Finnish language also poses further challenges. The aim of the research is to investigate what methods would be the most suitable to analyse and extract information from Finnish social media messages and to incorporate these into the implementation of a practical application. In order to determine the most effective methods for the purposes of this study, an extensive literature research was performed in the fields of social media mining and textual and linguistic analysis with a special focus on frameworks and methods designed for Finnish language. In addition, a website and a mobile application were developed for data collection, analysis and demonstration. The implemented traffic event detection system is able to detect and classify incidents from the public Twitter stream. Tests of the analysis methods have determined high accuracy both in terms of textual and cluster analysis. Although certain limitations and possible improvements should be considered in the future, the ready traffic information system has already demonstrated satisfactory performance and lay the foundation for further studies and research

    Detection of traffic events from Finnish social media data

    Get PDF
    Social media has gained significant popularity and importance during the past few years and has become an essential part of many people s everyday lives. As social media users write about a broad range of topics, popular social networking sites can serve as a perfect base for various data mining and information extraction applications. One possibility among these could be the real-time detection of unexpected traffic events or anomalies, which could be used to help traffic managers to discover and mitigate problematic spots in a timely manner or to assist passengers with making informed decisions about their travel route. The purpose of this study is to develop a Finnish traffic information system that relies on social media data. The potential of using social network streams in traffic information extraction has been demonstrated in several big cities, but no study has so far investigated the possible use in smaller communities such as towns in Finland. The complexity of Finnish language also poses further challenges. The aim of the research is to investigate what methods would be the most suitable to analyse and extract information from Finnish social media messages and to incorporate these into the implementation of a practical application. In order to determine the most effective methods for the purposes of this study, an extensive literature research was performed in the fields of social media mining and textual and linguistic analysis with a special focus on frameworks and methods designed for Finnish language. In addition, a website and a mobile application were developed for data collection, analysis and demonstration. The implemented traffic event detection system is able to detect and classify incidents from the public Twitter stream. Tests of the analysis methods have determined high accuracy both in terms of textual and cluster analysis. Although certain limitations and possible improvements should be considered in the future, the ready traffic information system has already demonstrated satisfactory performance and lay the foundation for further studies and research
    corecore