39 research outputs found

    ZeroTouch Provisioning (ZTP) Model and Infrastructure Components for Multi-provider Cloud Services Provisioning

    Get PDF

    Scalability Benchmarking of Cloud-Native Applications Applied to Event-Driven Microservices

    Get PDF
    Cloud-native applications constitute a recent trend for designing large-scale software systems. This thesis introduces the Theodolite benchmarking method, allowing researchers and practitioners to conduct empirical scalability evaluations of cloud-native applications, their frameworks, configurations, and deployments. The benchmarking method is applied to event-driven microservices, a specific type of cloud-native applications that employ distributed stream processing frameworks to scale with massive data volumes. Extensive experimental evaluations benchmark and compare the scalability of various stream processing frameworks under different configurations and deployments, including different public and private cloud environments. These experiments show that the presented benchmarking method provides statistically sound results in an adequate amount of time. In addition, three case studies demonstrate that the Theodolite benchmarking method can be applied to a wide range of applications beyond stream processing

    Applications of ontology in the internet of things: A systematic analysis

    Get PDF
    Ontology has been increasingly implemented to facilitate the Internet of Things (IoT) activities, such as tracking and information discovery, storage, information exchange, and object addressing. However, a complete understanding of using ontology in the IoT mechanism remains lacking. The main goal of this research is to recognize the use of ontology in the IoT process and investigate the services of ontology in IoT activities. A systematic literature review (SLR) is conducted using predefined protocols to analyze the literature about the usage of ontologies in IoT. The following conclusions are obtained from the SLR. (1) Primary studies (i.e., selected 115 articles) have addressed the need to use ontologies in IoT for industries and the academe, especially to minimize interoperability and integration of IoT devices. (2) About 31.30% of extant literature discussed ontology development concerning the IoT interoperability issue, while IoT privacy and integration issues are partially discussed in the literature. (3) IoT styles of modeling ontologies are diverse, whereas 35.65% of total studies adopted the OWL style. (4) The 32 articles (i.e., 27.83% of the total studies) reused IoT ontologies to handle diverse IoT methodologies. (5) A total of 45 IoT ontologies are well acknowledged, but the IoT community has widely utilized none. An in-depth analysis of different IoT ontologies suggests that the existing ontologies are beneficial in designing new IoT ontology or achieving three main requirements of the IoT field: interoperability, integration, and privacy. This SLR is finalized by identifying numerous validity threats and future directions

    Critical analysis of vendor lock-in and its impact on cloud computing migration: a business perspective

    Get PDF
    Vendor lock-in is a major barrier to the adoption of cloud computing, due to the lack of standardization. Current solutions and efforts tackling the vendor lock-in problem are predominantly technology-oriented. Limited studies exist to analyse and highlight the complexity of vendor lock-in problem in the cloud environment. Consequently, most customers are unaware of proprietary standards which inhibit interoperability and portability of applications when taking services from vendors. This paper provides a critical analysis of the vendor lock-in problem, from a business perspective. A survey based on qualitative and quantitative approaches conducted in this study has identified the main risk factors that give rise to lock-in situations. The analysis of our survey of 114 participants shows that, as computing resources migrate from on-premise to the cloud, the vendor lock-in problem is exacerbated. Furthermore, the findings exemplify the importance of interoperability, portability and standards in cloud computing. A number of strategies are proposed on how to avoid and mitigate lock-in risks when migrating to cloud computing. The strategies relate to contracts, selection of vendors that support standardised formats and protocols regarding standard data structures and APIs, developing awareness of commonalities and dependencies among cloud-based solutions. We strongly believe that the implementation of these strategies has a great potential to reduce the risks of vendor lock-in

    A Systematic Literature Review on Distributed Machine Learning in Edge Computing

    Get PDF
    Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and heterogeneous than typical cloud devices, many hindrances have to be overcome to fully extract the potential benefits of such an approach (such as data-in-motion analytics). In this paper, we investigate the challenges of running ML/DL on edge devices in a distributed way, paying special attention to how techniques are adapted or designed to execute on these restricted devices. The techniques under discussion pervade the processes of caching, training, inference, and offloading on edge devices. We also explore the benefits and drawbacks of these strategies
    corecore