13 research outputs found

    A Combined 90/900 MHz IC Architecture for Smart Tag Application

    Get PDF
    In this work we present a combined 90/900 MHz Energy Harvesting Architecture for active smart tag Application. The harvester takes advantages from a dedicated diplexer and a power manager for battery life enhancement purposes. The system has been optimized in the 900 MHz frequency range by analyzing a probabilistic approach used for modeling the possible amount of Global System for Mobile communication (GSM) energy that could be harvested while a fixed power downlink scenario has been adopted for the 90MHz band. A preliminary IC system with a 0.18μm CMOS SMIC technology has been designed and optimized at 90 and 900 MHz while discrete element board, to be integrated with the proposed IC, with commercial components has been developed and tested. Concerning simulation results on the IC design they have confirmed that the integrated system handles an incoming power typically ranging from -25 dBm to 5 dBm by rectifying the variable input signals into a DC voltage source with an average 50% efficiency

    A 10-17 DOF Sensory Gloves with Harvesting Capability for Smart Healthcare

    Get PDF
    We here present a 10-17 Degrees of Freedom (DoF) sensory gloves for Smart Healthcare implementing an energy harvesting architecture, aimed at enhancing the battery lasting when powering the electronics of the two different types of gloves, used to sense fingers movements. In particular, we realized a comparison in terms of measurement repeatability and reliability, as well as power consumption and battery lasting, between two sensory gloves implemented by means of different technologies. The first is a 3D printed glove with 10 DoF, featuring low-cost, low-effort fabrication and low-power consumption. The second is a classical Lycra® glove with 14 DoF suitable for a more detailed assessment of the hand postures, featuring a relatively higher cost and power consumption. An electronic circuitry was designed to gather and elaborate data from both types of sensory gloves, differing for number of inputs only. Both gloves are equipped with flex sensors and in addiction with the electronics (including a microcontroller and a transmitter) allow the control of hand virtual limbs or mechanical arts in surgical, military, space and civil applications.Six healthy subjects were involved in tests suitable to evaluate the performances of the proposed gloves in terms of repeatability, reproducibility and reliability. Particular effort was devoted to increase battery lasting for both glove-based systems, with the electronics relaying on Radio Frequency, Piezoelectric and Thermoelectric harvesters. The harvesting part was built and tested as a prototype discrete element board, that is interfaced with an external microcontroller and a radiofrequency transmitter board. Measurement results demonstrated a meaningful improvement in battery operation time up to 25%, considering different operating scenarios

    Noise Analysis in VLC Optical Link based Discrette OP-AMP Trans-impedance Amplifier (TIA)

    Get PDF
    To design Visible Light Communication (VLC) system, there are several requirements that needs to be met. One of the requirements is an active component selection (e.g. Op Amp). As an ideal communication system, VLC system has to be able to provides wide bandwidth access with minimum noise. The Transimpedance amplifiers (TIAs) is one of main components in optical system which is placed in the first stage of receiver system. It is used to convert the current output from photodiode to voltage. We have designed a 1 MHz fGBW TIA with low noise (in μVrms range). This paper aims to explain the design and implementation of TIA circuit with photovoltaic topology which cover empirical calculations and simulation of TIA’s bandwidth and its noise sources, i.e. resistor feedback noise, current noise, voltage noise and total noise based on RSS. The OP-AMP is chosen from Texas Instruments product, OPA 380, and photodiode is chosen from OSRAM, SFH213, then simulated by TINA-TI SPICE® software. The noise in TIA circuit is analyzed clearly. The developed kit is ready to be implemented in VLC system

    大規模システムLSI設計のための統一的ハードウェア・ソフトウェア協調検証手法

    Get PDF
    Currently, the complexity of embedded LSI system is growing faster than the productivity of system design. This trend results in a design productivity gap, particularly in tight development time. Since the verification task takes bigger part of development task, it becomes a major challenge in LSI system design. In order to guarantee system reliability and quality of results (QoR), verifying large coverage of system functionality requires huge amount of relevant test cases and various scenario of evaluations. To overcome these problems, verification methodology is evolving toward supporting higher level of design abstraction by employing HW-SW co-verification. In this study, we present a novel approach for verification LSI circuit which is called as unified HW/SW co-verification framework. The study aims to improve design efficiency while maintains implementation consistency in the point of view of system-level performance. The proposed data-driven simulation and flexible interface of HW and SW design become the backbone of verification framework. In order to avoid time consuming, prone error, and iterative design spin-off in a large team, the proposed framework has to support multiple design abstractions. Hence, it can close the loop of design, exploration, optimization, and testing. Furthermore, the proposed methodology is also able to co-operate with system-level simulation in high-level abstraction, which is easy to extend for various applications and enables fast-turn around design modification. These contributions are discussed in chapter 3. In order to show the effectiveness and the use-cases of the proposed verification framework, the evaluation and metrics assessments of Very High Throughput wireless LAN system design are carried out. Two application examples are provided. The first case in chapter 4 is intended for fast verification and design exploration of large circuit. The Maximum Likelihood Detection (MLD) MIMO decoder is considered as Design Under Test (DUT). The second case, as presented in chapter 5, is the evaluation for system-level simulation. The full transceiver system based on IEEE 802.11ac standard is employed as DUT. Experimental results show that the proposed verification approach gives significant improvements of verification time (e.g. up to 10,000 times) over the conventional scheme. The proposed framework is also able to support various schemes of system level evaluations and cross-layer evaluation of wireless system.九州工業大学博士学位論文 学位記番号:情工博甲第328号 学位授与年月日:平成29年6月30日1 Introduction|2 Design and Verification in LSI System Design|3 Unified HW/SW Co-verification Methodology|4 Fast Co-verification and Design Exploration in Complex Circuits|5 Unified System Level Simulator for Very High Throughput Wireless Systems|6 Conclusion and Future Work九州工業大学平成29年

    Waveform Design for 5G and beyond Systems

    Get PDF
    5G traffic has very diverse requirements with respect to data rate, delay, and reliability. The concept of using multiple OFDM numerologies adopted in the 5G NR standard will likely meet these multiple requirements to some extent. However, the traffic is radically accruing different characteristics and requirements when compared with the initial stage of 5G, which focused mainly on high-speed multimedia data applications. For instance, applications such as vehicular communications and robotics control require a highly reliable and ultra-low delay. In addition, various emerging M2M applications have sparse traffic with a small amount of data to be delivered. The state-of-the-art OFDM technique has some limitations when addressing the aforementioned requirements at the same time. Meanwhile, numerous waveform alternatives, such as FBMC, GFDM, and UFMC, have been explored. They also have their own pros and cons due to their intrinsic waveform properties. Hence, it is the opportune moment to come up with modification/variations/combinations to the aforementioned techniques or a new waveform design for 5G systems and beyond. The aim of this Special Issue is to provide the latest research and advances in the field of waveform design for 5G systems and beyond

    Visible light communication system based on software defined radio: Performance study of intelligent transportation and indoor applications

    Get PDF
    In this paper, our first attempt at visible light communication system, based on software defined radio (SDR) and implemented in LabVIEW is introduced. This paper mainly focuses on two most commonly used types of LED lights, ceiling lights and LED car lamps/tail-lights. The primary focus of this study is to determine the basic parameters of real implementation of visible light communication (VLC) system, such as transmit speed, communication errors (bit-error ratio, error vector magnitude, energy per bit to noise power spectral density ratio) and highest reachable distance. This work focuses on testing various multistate quadrature amplitude modulation (M-QAM). We have used Skoda Octavia III tail-light and Phillips indoor ceiling light as transmitters and SI PIN Thorlabs photodetector as receiver. Testing method for each light was different. When testing ceiling light, we have focused on reachable distance for each M-QAM variant. On the other side, Octavia tail-light was tested in variable nature conditions (such as thermal turbulence, rain, fog) simulated in special testing box. This work will present our solution, measured parameters and possible weak spots, which will be adjusted in the future.Web of Science84art. no. 43

    Survey of DC-DC Non-Isolated Topologies for Unidirectional Power Flow in Fuel Cell Vehicles

    Get PDF
    The automobile companies are focusing on recent technologies such as growing Hydrogen (H2) and Fuel Cell (FC) Vehicular Power Train (VPT) to improve the Tank-To-Wheel (TTW) efficiency. Benefits, the lower cost, `Eco\u27 friendly, zero-emission and high-power capacity, etc. In the power train of fuel cell vehicles, the DC-DC power converters play a vital role to boost the fuel cell stack voltage. Hence, satisfy the demand of the motor and transmission in the vehicles. Several DC-DC converter topologies have proposed for various vehicular applications like fuel cell, battery, and renewable energy fed hybrid vehicles etc. Most cases, the DC-DC power converters are viable and cost-effective solutions for FC-VPT with reduced size and increased efficiency. This article describes the state-of-the-art in unidirectional non-isolated DC-DC Multistage Power Converter (MPC) topologies for FC-VPT application. The paper presented the comprehensive review, comparison of different topologies and stated the suitability for different vehicular applications. This article also discusses the DC-DC MPC applications more specific to the power train of a small vehicle to large vehicles (bus, trucks etc.). Further, the advantages and disadvantages pointed out with the prominent features for converters. Finally, the classification of the DC-DC converters, its challenges, and applications for FC technology is presented in the review article as state-of-the-art in research

    Retinal drug delivery: rethinking outcomes for the efficient replication of retinal behavior

    Get PDF
    The retina is a highly organized structure that is considered to be "an approachable part of the brain." It is attracting the interest of development scientists, as it provides a model neurovascular system. Over the last few years, we have been witnessing significant development in the knowledge of the mechanisms that induce the shape of the retinal vascular system, as well as knowledge of disease processes that lead to retina degeneration. Knowledge and understanding of how our vision works are crucial to creating a hardware-adaptive computational model that can replicate retinal behavior. The neuronal system is nonlinear and very intricate. It is thus instrumental to have a clear view of the neurophysiological and neuroanatomic processes and to take into account the underlying principles that govern the process of hardware transformation to produce an appropriate model that can be mapped to a physical device. The mechanistic and integrated computational models have enormous potential toward helping to understand disease mechanisms and to explain the associations identified in large model-free data sets. The approach used is modulated and based on different models of drug administration, including the geometry of the eye. This work aimed to review the recently used mathematical models to map a directed retinal network.The authors acknowledge the financial support received from the Portuguese Science and Technology Foundation (FCT/MCT) and the European Funds (PRODER/COMPETE) for the project UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020. The authors also acknowledge FAPESP – São Paulo Research Foundation, for the financial support for the publication of the article.info:eu-repo/semantics/publishedVersio

    Circuits and Systems Advances in Near Threshold Computing

    Get PDF
    Modern society is witnessing a sea change in ubiquitous computing, in which people have embraced computing systems as an indispensable part of day-to-day existence. Computation, storage, and communication abilities of smartphones, for example, have undergone monumental changes over the past decade. However, global emphasis on creating and sustaining green environments is leading to a rapid and ongoing proliferation of edge computing systems and applications. As a broad spectrum of healthcare, home, and transport applications shift to the edge of the network, near-threshold computing (NTC) is emerging as one of the promising low-power computing platforms. An NTC device sets its supply voltage close to its threshold voltage, dramatically reducing the energy consumption. Despite showing substantial promise in terms of energy efficiency, NTC is yet to see widescale commercial adoption. This is because circuits and systems operating with NTC suffer from several problems, including increased sensitivity to process variation, reliability problems, performance degradation, and security vulnerabilities, to name a few. To realize its potential, we need designs, techniques, and solutions to overcome these challenges associated with NTC circuits and systems. The readers of this book will be able to familiarize themselves with recent advances in electronics systems, focusing on near-threshold computing

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces
    corecore