44 research outputs found

    A cryptographic cloud-based approach for the mitigation of the airline cargo cancellation problem

    Get PDF
    In order to keep in good long-term relationships with their main customers, Airline Cargo companies do not impose any fee for last minute cancellations of shipments. As a result, customers can book the same shipment on several cargo companies. Cargo companies try to balance cancellations by a corresponding volume of overbooking. However, the considerable uncertainty in the number of cancellations does not allow to fine-tune the optimal overbooking level, causing losses. In this work, we show how the deployment of cryptographic techniques, enabling the computation on private information of customers and companies data can improve the overall service chain, allowing for striking and enforcing better agreements. We propose a query system based on proxy re-encryption and show how the relevant information can be extracted, still preserving the privacy of customers\u2019 data. Furthermore, we provide a Game Theoretic model of the use case scenario and show that it allows a more accurate estimate of the cancellation rates. This supports the reduction of the uncertainty and allows to better tune the overbooking level

    Design and Analysis of a True Random Number Generator Based on GSR Signals for Body Sensor Networks

    Get PDF
    This article belongs to the Section Internet of ThingsToday, medical equipment or general-purpose devices such as smart-watches or smart-textiles can acquire a person's vital signs. Regardless of the type of device and its purpose, they are all equipped with one or more sensors and often have wireless connectivity. Due to the transmission of sensitive data through the insecure radio channel and the need to ensure exclusive access to authorised entities, security mechanisms and cryptographic primitives must be incorporated onboard these devices. Random number generators are one such necessary cryptographic primitive. Motivated by this, we propose a True Random Number Generator (TRNG) that makes use of the GSR signal measured by a sensor on the body. After an exhaustive analysis of both the entropy source and the randomness of the output, we can conclude that the output generated by the proposed TRNG behaves as that produced by a random variable. Besides, and in comparison with the previous proposals, the performance offered is much higher than that of the earlier works.This work was supported by the Spanish Ministry of Economy and Competitiveness under the contract ESP-2015-68245-C4-1-P, by the MINECO grant TIN2016-79095-C2-2-R (SMOG-DEV), and by the Comunidad de Madrid (Spain) under the project CYNAMON (P2018/TCS-4566), co-financed by European Structural Funds (ESF and FEDER). This research was also supported by the Interdisciplinary Research Funds (HTC, United Arab Emirates) under the grant No. 103104

    Multi-Factor Authentication: A Survey

    Get PDF
    Today, digitalization decisively penetrates all the sides of the modern society. One of the key enablers to maintain this process secure is authentication. It covers many different areas of a hyper-connected world, including online payments, communications, access right management, etc. This work sheds light on the evolution of authentication systems towards Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). Particularly, MFA is expected to be utilized for human-to-everything interactions by enabling fast, user-friendly, and reliable authentication when accessing a service. This paper surveys the already available and emerging sensors (factor providers) that allow for authenticating a user with the system directly or by involving the cloud. The corresponding challenges from the user as well as the service provider perspective are also reviewed. The MFA system based on reversed Lagrange polynomial within Shamir’s Secret Sharing (SSS) scheme is further proposed to enable more flexible authentication. This solution covers the cases of authenticating the user even if some of the factors are mismatched or absent. Our framework allows for qualifying the missing factors by authenticating the user without disclosing sensitive biometric data to the verification entity. Finally, a vision of the future trends in MFA is discussed.Peer reviewe

    DCSS protocol for data caching and sharing security in a 5G network

    Get PDF
    Fifth Generation mobile networks (5G) promise to make network services provided by various Service Providers (SP) such as Mobile Network Operators (MNOs) and third-party SPs accessible from anywhere by the end-users through their User Equipment (UE). These services will be pushed closer to the edge for quick, seamless, and secure access. After being granted access to a service, the end-user will be able to cache and share data with other users. However, security measures should be in place for SP not only to secure the provisioning and access of those services but also, should be able to restrict what the end-users can do with the accessed data in or out of coverage. This can be facilitated by federated service authorization and access control mechanisms that restrict the caching and sharing of data accessed by the UE in different security domains. In this paper, we propose a Data Caching and Sharing Security (DCSS) protocol that leverages federated authorization to provide secure caching and sharing of data from multiple SPs in multiple security domains. We formally verify the proposed DCSS protocol using ProVerif and applied pi-calculus. Furthermore, a comprehensive security analysis of the security properties of the proposed DCSS protocol is conducted

    Secure Sensor Prototype Using Hardware Security Modules and Trusted Execution Environments in a Blockchain Application: Wine Logistic Use Case

    Get PDF
    The security of Industrial Internet of Things (IIoT) systems is a challenge that needs to be addressed immediately, as the increasing use of new communication paradigms and the abundant use of sensors opens up new opportunities to compromise these types of systems. In this sense, technologies such as Trusted Execution Environments (TEEs) and Hardware Security Modules (HSMs) become crucial for adding new layers of security to IIoT systems, especially to edge nodes that incorporate sensors and perform continuous measurements. These technologies, coupled with new communication paradigms such as Blockchain, offer a high reliability, robustness and good interoperability between them. This paper proposes the design of a secure sensor incorporating the above mentioned technologies—HSMs and a TEE—in a hardware device based on a dual-core architecture. Through this combination of technologies, one of the cores collects the data extracted by the sensors and implements the security mechanisms to guarantee the integrity of these data, while the remaining core is responsible for sending these data through the appropriate communication protocol. This proposed approach fits into the Blockchain networks, which act as an Oracle. Finally, to illustrate the application of this concept, a use case applied to wine logistics is described, where this secure sensor is integrated into a Blockchain that collects data from the storage and transport of barrels, and a performance evaluation of the implemented prototype is providedEuropean Union’s Horizon Europe research and innovation program through the funding project “Cognitive edge-cloud with serverless computing” (EDGELESS) under grant agreement number 101092950FEDER/Junta de Andalucia-Consejeria de Transformacion Economica, Industria, Conocimiento y Universidades under Project B-TIC-588-UGR2

    Agents in a privacy-preserving world

    Get PDF
    Privacy is a fluid concept. It is both difficult to define and difficult to achieve. The large amounts of data currently available at hands of companies and administrations increase individual concerns on what is yet to be known about us. For the sake of penalisation and customisation, we often need to give up and supply information that we consider sensitive and private. Other sensitive information is inferred from information that seems harmless. Even when we explicitly require privacy and anonymity, profiling and device fingerprinting may disclose information about us leading to reidentification. Mobile devices and the internet of things make keeping our live private still more difficult. Agent technologies can play a fundamental role to provide privacy-aware solutions. Agents are inherently suitable in the heterogeneous environment in which our devices work, and we can delegate to them the task of protecting our privacy. Agents should be able to reason about our privacy requirements, and may collaborate (or not) with other agents to help us to achieve our privacy goals. We are presented in the connected world with multiple interests, profiles, and also through multiple agentified devices. We envision our agentified devices to collaborate among themselves and with other devices so that our privacy preferences are satisfied. We believe that this is an overlooked field. Our work intends to start shedding some light on the topic by outlining the requirements and challenges where agent technologies can provide a decisive role

    A Survey and Evaluation of Android-Based Malware Evasion Techniques and Detection Frameworks

    Get PDF
    Android platform security is an active area of research where malware detection techniques continuously evolve to identify novel malware and improve the timely and accurate detection of existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid or prolong malware detection effectively. Past studies have shown that malware detection systems are susceptible to evasion attacks where adversaries can successfully bypass the existing security defenses and deliver the malware to the target system without being detected. The evolution of escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and evaluation of Android-based malware evasion techniques deployed to circumvent malware detection. The study characterizes such evasion techniques into two broad categories, polymorphism and metamorphism, and analyses techniques used for stealth malware detection based on the malware’s unique characteristics. Furthermore, the article also presents a qualitative and systematic comparison of evasion detection frameworks and their detection methodologies for Android-based malware. Finally, the survey discusses open-ended questions and potential future directions for continued research in mobile malware detection
    corecore