46 research outputs found

    An HMM-Based Framework for Supporting Accurate Classification of Music Datasets

    Get PDF
    open3In this paper, we use Hidden Markov Models (HMM) and Mel-Frequency Cepstral Coecients (MFCC) to build statistical models of classical music composers directly from the music datasets. Several musical pieces are divided by instruments (String, Piano, Chorus, Orchestra), and, for each instrument, statistical models of the composers are computed.We selected 19 dierent composers spanning four centuries by using a total number of 400 musical pieces. Each musical piece is classied as belonging to a composer if the corresponding HMM gives the highest likelihood for that piece. We show that the so-developed models can be used to obtain useful information on the correlation between the composers. Moreover, by using the maximum likelihood approach, we also classied the instrumentation used by the same composer. Besides as an analysis tool, the described approach has been used as a classier. This overall originates an HMM-based framework for supporting accurate classication of music datasets. On a dataset of String Quartet movements, we obtained an average composer classication accuracy of more than 96%. As regards instrumentation classication, we obtained an average classication of slightly less than 100% for Piano, Orchestra and String Quartet. In this paper, the most signicant results coming from our experimental assessment and analysis are reported and discussed in detail.openCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, GianniCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, Giann

    Determining and assessing the risks of commercial and recreational complex building projects in developing countries : a survey of experts in Iran

    Get PDF
    Purpose: As construction of commercial and recreational complex building projects (CRCBPs) is one of the most important issues in many developing countries and requires a very high cost of implementation, it is important to identify and prioritize the risks of such projects. Therefore, the purpose of this study is to identify and rank the risks of CRCBPs by studying the case of the “Hamedanian Memorial,” a CRCBP in Iran. Design/methodology/approach: To pursue this aim, a descriptive-survey method was used. The statistical population of the study consists of 30 experienced experts (consultants, contractors and employers) of the “Hamedanian Memorial” project selected according to the Cochran formula and minimum population census. A questionnaire was used as the data collection tool, administered in all stages of risk identification and evaluation, and was devised by using library and field methods based on the literature and research background, as well as interviewing experts in the risk identification and evaluation stages. Kendall’s coefficient of agreement was used to validate the experts’ opinions in the risk identification stage. The ranking in qualitative evaluation was done based on the risk intensity and the cumulative risk index. Findings: The results show that the risks are associated with exchange rate fluctuation, inflation fluctuation, access to skilled workers, contractors’ claims and foreign threats from international relations. Originality/value: The results and findings of the present study can be of interest to the executives of large commercial, leisure, public and private projects in developing and developed countries; understanding risks can significantly improve the decision-making process of CRCBPs

    From Data to Actions in Intelligent Transportation Systems: A Prescription of Functional Requirements for Model Actionability

    Get PDF
    Advances in Data Science permeate every field of Transportation Science and Engineering, resulting in developments in the transportation sector that are data-driven. Nowadays, Intelligent Transportation Systems (ITS) could be arguably approached as a “story” intensively producing and consuming large amounts of data. A diversity of sensing devices densely spread over the infrastructure, vehicles or the travelers’ personal devices act as sources of data flows that are eventually fed into software running on automatic devices, actuators or control systems producing, in turn, complex information flows among users, traffic managers, data analysts, traffic modeling scientists, etc. These information flows provide enormous opportunities to improve model development and decision-making. This work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes; in other words, for data-based models to fully become actionable. Grounded in this described data modeling pipeline for ITS, we define the characteristics, engineering requisites and challenges intrinsic to its three compounding stages, namely, data fusion, adaptive learning and model evaluation. We deliberately generalize model learning to be adaptive, since, in the core of our paper is the firm conviction that most learners will have to adapt to the ever-changing phenomenon scenario underlying the majority of ITS applications. Finally, we provide a prospect of current research lines within Data Science that can bring notable advances to data-based ITS modeling, which will eventually bridge the gap towards the practicality and actionability of such models.This work was supported in part by the Basque Government for its funding support through the EMAITEK program (3KIA, ref. KK-2020/00049). It has also received funding support from the Consolidated Research Group MATHMODE (IT1294-19) granted by the Department of Education of the Basque Government

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Innovative Technologies and Services for Smart Cities

    Get PDF
    A smart city is a modern technology-driven urban area which uses sensing devices, information, and communication technology connected to the internet of things (IoTs) for the optimum and efficient utilization of infrastructures and services with the goal of improving the living conditions of citizens. Increasing populations, lower budgets, limited resources, and compatibility of the upgraded technologies are some of the few problems affecting the implementation of smart cities. Hence, there is continuous advancement regarding technologies for the implementation of smart cities. The aim of this Special Issue is to report on the design and development of integrated/smart sensors, a universal interfacing platform, along with the IoT framework, extending it to next-generation communication networks for monitoring parameters of interest with the goal of achieving smart cities. The proposed universal interfacing platform with the IoT framework will solve many challenging issues and significantly boost the growth of IoT-related applications, not just in the environmental monitoring domain but in the other key areas, such as smart home, assistive technology for the elderly care, smart city with smart waste management, smart E-metering, smart water supply, intelligent traffic control, smart grid, remote healthcare applications, etc., signifying benefits for all countries
    corecore