15 research outputs found

    Joining the game and the experiment in peer-to-peer remote laboratories for STEM education

    Get PDF
    Remote Access Laboratories (RAL) provide access to experimental setups from remote locations. These experimental setups are composed of controller units programmed to gather data and interact with user inputs. A distributed version of RAL can be maker oriented i.e. the experiment rigs are designed by individuals and shared among each other. This paper presents the programming aspects and activity user interface (UI) design and organization of experiments in a distributed RAL aims at STEM education. The user interface must be interactive to increase engagement and motivation for the user. Being designed for school students, the environment to create the control logic of a rig created by the student needs to be on a homogenous platform. The programming language has to be easy to understand and use. Characteristics and requirements of a graphical programming language SNAP, which is modified and used as the programming platform for RAL, is studied in this paper

    Introducing RALfie – remote access laboratories for fun, innovation and education

    Get PDF
    Remote Access laboratories are online platform for performing experiments from remote locations. Usually these systems follow a centralised client-server paradigm. This demo will present RALfie - Remote Access Laboratories for Fun, Innovation and Education that is a peer-to-peer remote access laboratory architecture where participants are both users of experiments as well as makers. The system is built upon a VPN service that allows direct access between learner and makers’ experiential rigs. A graphical programming language SNAP is the basis of programming and interfacing with the experimental rig. Apart from experiment and interfaces, quest-based learning strategy is used that presents the experiments as a set of hierarchical groups of activities or quests. This distributed design of RAL allows more hands-on experience to build any experimental setup and provides opt unities to collaborate with fellow students

    Laboratórios Remotos: Um Experimento Internacional de Educação em Engenharia

    Get PDF
    Palestra plenĂĄria sobre a utilização de laboratĂłrios remotos como base para a cooperação e colaboração entre InstituiçÔes de Ensino Superior e Investigadores da Europa e da AmĂ©rica Latina, com especial incidĂȘncia no Brasil, proferida no 44Âș Congresso Anual da Sociedade Brasileira de Educação em Engenharia (COBENGE), Natal, RN, Brasil, no dia 28 de Setembro de 2016.info:eu-repo/semantics/publishedVersio

    Preliminaries of orthogonal layered defence using functional and assurance controls in industrial control systems

    Get PDF
    Industrial Control Systems (ICSs) are responsible for the automation of different processes and the overall control of systems that include highly sensitive potential targets such as nuclear facilities, energy-distribution, water-supply, and mass-transit systems. Given the increased complexity and rapid evolvement of their threat landscape, and the fact that these systems form part of the Critical National infrastructure (CNI), makes them an emerging domain of conflict, terrorist attacks, and a playground for cyberexploitation. Existing layered-defence approaches are increasingly criticised for their inability to adequately protect against resourceful and persistent adversaries. It is therefore essential that emerging techniques, such as orthogonality, be combined with existing security strategies to leverage defence advantages against adaptive and often asymmetrical attack vectors. The concept of orthogonality is relatively new and unexplored in an ICS environment and consists of having assurance control as well as functional control at each layer. Our work seeks to partially articulate a framework where multiple functional and assurance controls are introduced at each layer of ICS architectural design to further enhance security while maintaining critical real-time transfer of command and control traffic

    The VISIR+ Project – Preliminary results of the training actions

    Get PDF
    Experimental competences allow engineering students to consolidate knowledge and skills. Remote labs are a powerful tool to aid students in those developments. The VISIR remote lab was considered the best remote lab in the world in 2015. The VISIR+ project main goal is to spread VISIR usage in Brazil and Argentina, providing technical and didactical sup- port. This paper presents an analysis of the already prosecuted actions regarding this project and an assessment of their impact in terms of conditioning factors. The overall outcomes are highly positive since, in each Latin American Higher Education Institution, all training actions were successful, the first didactical implementations were designed and ongoing in the current semester. In some cases, instead of one foreseen implementation, there are several. The most statistically conditioning factors which affected the outcomes were the pre-experience with re- mote labs, the pre-experience with VISIR and the training actions duration. The teachers’ per- ceptions that most conditioned their enrollment in implementing VISIR in their courses were related to their consciousness of the VISIR effectiveness to teach and learn. The lack of time to practice and discuss their doubts and the fulfillment of their expectations in the training actions, also affected how comfortable in modifying their course curricula teachers were.info:eu-repo/semantics/acceptedVersio

    Chapter 1

    Get PDF
    Experimenting is fundamental to the training process of all scientists and engineers. While experiments have been traditionally done inside laboratories, the emergence of Information and Communication Technologies added two alter-natives accessible anytime, anywhere. These two alternatives are known as virtual and remote labs, and are sometimes indistinguishably referred as online labs. Sim-ilarly to other instructional technologies, virtual and remote labs require some ef-fort from teachers in integrating them into curricula, taking into consideration sev-eral factors that affect their adoption (i.e. cost) and their educational effectiveness (i.e. benefit). This chapter analyses these two dimensions and sustains the case where only through international cooperation it is possible to serve the large num-ber of teachers and students involved in engineering education. It presents an ex-ample in the area of Electrical and Electronics Engineering, based on a remote lab named Virtual Instruments System in Reality, and it then describes how a number of European and Latin-American institutions have been cooperating under the scope of an Erasmus+ project2, for spreading its use in Brazil and Argentina.info:eu-repo/semantics/publishedVersio

    Fomento de las competencias experimentales utilizando recursos complementarios

    Get PDF
    [EN]The use of ICT in the academic context is a reality, in the world we live in. The young generation of students is digital native, being immersed in a virtual world during a considerable part of their day. This has an impact in their life, including on their education. In undergraduate engineering education laboratory classes are an integral part of its curriculum. These days, many laboratory classes combine traditional hands-on labs with online labs (remote and virtual labs) and several experimental resources. A “blended” or “hybrid” approach to experimental learning seems the most effective to (students’) experimental learning and the development of competences. Still this technologically mediated resource affects the way students learn and in the literature there is still a lack of works, considering the characterization of didactical implementations using a “blended” or “hybrid” approach and its impact in students’ learning and the way they construct their knowledge. In the Electric and Electronic Engineering topic and using the remote laboratory VISIR there are really very few works, reported in literature, describing some small scaled didactical experiments. The problematic which motivated this work was the need to understand the impact of different didactical approaches using this methodology (simultaneous use of several experimental resources) has on students’ academic results. Ultimately this work intends to contribute to fill a gap identified in the literature: identify factors (including some eventual students’ characteristics) which affect students’ learning and engagement in the electric and electronic circuits topic using the remote lab VISIR along with other complementary resources. To accomplish this end, four research questions where posed, each of them taking into account a set of factors in a specific field of inquiry and its influence on students’ results. The first research question approached the way the several experimental resources could be combined and its effect on students. The second dealt with the influence of the proposed VISIR tasks characteristics on students’ results. The third tackled important teacher mediation traces that could be linked to better students’ performance. And finally, the last research question investigates if there were students’ characteristics that were more associated with good learning outcomes and engagement. Considering the former objectives, it was chosen a multi-case study research methodology, using a mixed method approach, resourcing mainly to questionnaire, interview, documental analysis and observation as data gathering methods, and statistical analysis (descriptive and inferential) and content analysis, as data analysis techniques. A large-scale study analysis was conducted, including 26 courses (in a total of 43 didactical implementations using VISIR, as some of the courses have undergone more than one course implementation edition), comprising 1794 students and involving 52 different teachers. This study took place in several Higher Education Institutions (and at a minor extent, in some Technological and High Schools) in Argentina, Brazil and Portugal. In the southern hemisphere these didactical implementations happened in the 2016 and 2017 academic years while in the northern hemisphere it was possible to collect data from three semesters between 2016/17 and 2018/19 academic years. The study focused on analysing each didactical implementation (their characteristics, teachers’ usage and perception) and the matching students’ results (usage, academic results and perception). Ethical questions to guarantee both students’ and teachers’ privacy was taken care of, when using the data of the participants. The former data was only used for the purposes of this study and the state of the participation was reflected anonymously, which can be observed both in the information collected for the analysis as well as in the transcripts along the text. The study included the analysis of the collected data from various sources, the interpretation of its results using several analysis techniques, and the convergence in a process of triangulation. These results, after discussed with literature, allowed to answer in the most possible complete way the four research questions. Based on them, conclusions were drawn to identify factors that may foster students’ learning and engagement. The study also contributed to the advancement of knowledge in this research area. It allowed to conclude that VISIR and this methodology can be as useful for introductory courses as for more advanced ones (dealing with this thematic) as long as teachers plan the didactical implementation according to the type of course and students’ background. Plus, this methodology based upon VISIR can be applied with high success to courses that do not have an experimental component, nor its contents are directly related to the Electricity and Electronics topic. In these courses VISIR can be used with the purpose of contextualization, providing more interesting and appealing learning environments (e.g. theoretical mathematical courses). Finally, both teachers’ perception and students’ results suggest VISIR target public seems to be the students that require more support in their learning, that is, the students still struggling with difficulties than the more proficient students

    Implementation of a X-mode multichannel edge density profile reflectometer for the new ICRH antenna on ASDEX Upgrade

    Get PDF
    Ion cyclotron resonance heating (ICRH) is one of the main heating mechanisms for nuclear fusion plas- mas. However, studying the effects of ICRH operation, such as power coupling efficiency and convective transport, requires the measurement of the local edge plasma density profiles. Two new three-strap an- tennas were designed to reduce tungsten impurity release during operation, and installed on ASDEX Upgrade. One of these ICRH antennas embedded ten pairs of small microwave pyramidal horn anten- nas. In this thesis, a new multichannel X-mode microwave reflectometry diagnostic was developed to use these embedded antennas to simultaneously measure the edge electron density profiles in front of the bottom, middle and top regions of the radiating surface of the ICRH antenna. Microwave reflectome- try is a radar technique that measures the round trip delay of probing waves that are reflected at specific cutoff layers, depending on the probing wave frequency, plasma density and local magnetic field. This diagnostic uses a coherent heterodyne quadrature detection architecture and probes the plasma in the range 40-68 GHz to measure plasma edge electron densities up to 2×1019 m-3, with magnetic fields between 1.85 T and 2.7 T, and a repetition interval as low as 25 ÎŒs. This work details the implementa- tion and commissioning of the diagnostic, including the calibration of the microwave hardware and the analysis of the raw reflectometry measurements. We study the automatic initialization of the X-mode upper cutoff measurement, which is the main source of error in X-mode density profile reconstruction. Two first fringe estimation algorithms were developed: one based on amplitude and spectral information and another using a neural network model to recognize the first fringe location from spectrogram data. Kalman filters are used to improve radial measurement uncertainty to less than 1 cm. To validate the diagnostic, we compared the density profile measurements with other electron density diagnostics on ASDEX Upgrade, and observed typical plasma phenomena like the L-H transition and ELM activity. The experimental density profile results were used to corroborate ICRH power coupling simulations under different gas puffing conditions and to observe poloidal convective transport during ICRH operation

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore