15 research outputs found

    Conference of Advance Research and Innovation (ICARI-2014) 118 ICARI

    Get PDF
    Abstract With the advent of highly advanced optics and imaging system, currently biological research has reached a stage where scientists can study biological entities and processes at molecular and cellular-level in real time. However, a single experiment consists of hundreds and thousands of parameters to be recorded and a large population of microscopic objects to be tracked. Thus, making manual inspection of such events practically impossible. This calls for an approach to computer-vision based automated tracking and monitoring of cells in biological experiments. This technology promises to revolutionize the research in cellular biology and medical science which includes discovery of diseases by tracking the process in cells, development of therapy and drugs and the study of microscopic biological elements. This article surveys the recent literature in the area of computer vision based automated cell tracking. It discusses the latest trends and successes in the development and introduction of automated cell tracking techniques and systems

    Depth Map Improvement by Combining Passive and Active Scanning Methods

    Get PDF
    The paper presents a new method of more precise estimation of the depth map in 3D videos. The novelty of the proposed approach lies in sophisticated combination of partial results obtained by selected existing passive and active 3D scanning methods. The aim of the combination is to overcome drawbacks of individual methods and this way to improve the accessible precision of the final depth map. The active method used is incoherent profilometry scanning which fails on surface discontinuities. As a passive method, a stereo pair matching is used. This method is currently the most widely applied method of depth map estimation in the field of 3D capturing and is available in various implementations. Unfortunately, it fails if there is a lack of identifiable corresponding points in the scanned scene. The paper provides a specific way of combining these methods to improve the accuracy and usability. The proposed innovative technique exploits the advantages of both approaches. Specifically, the more accurate depth profiles of individual discontinuous objects obtained from the active method, and information about mean depths of the objects from the stereo pair are combined. Two implementations of the passive method have been tested for combination with active scanning: matching from stereo pair, and SIFT. The paper includes a brief description of the active and passive methods used and a thorough explanation of their combination. As an example, the proposed method is tested on a simple scene whose nature enables straight assessment of the achieved accuracy. The choice of a suitable implementation of the passive component is also shown and discussed. The obtained results of individual existing methods used and of the proposed combined method are given and compared. To demonstrate the contribution of the proposed combined method, also a comparison with the results obtained with a commercial solution is presented with significantly good results

    Content Based Image Retrieval (CBIR) in Remote Clinical Diagnosis and Healthcare

    Full text link
    Content-Based Image Retrieval (CBIR) locates, retrieves and displays images alike to one given as a query, using a set of features. It demands accessible data in medical archives and from medical equipment, to infer meaning after some processing. A problem similar in some sense to the target image can aid clinicians. CBIR complements text-based retrieval and improves evidence-based diagnosis, administration, teaching, and research in healthcare. It facilitates visual/automatic diagnosis and decision-making in real-time remote consultation/screening, store-and-forward tests, home care assistance and overall patient surveillance. Metrics help comparing visual data and improve diagnostic. Specially designed architectures can benefit from the application scenario. CBIR use calls for file storage standardization, querying procedures, efficient image transmission, realistic databases, global availability, access simplicity, and Internet-based structures. This chapter recommends important and complex aspects required to handle visual content in healthcare.Comment: 28 pages, 6 figures, Book Chapter from "Encyclopedia of E-Health and Telemedicine

    Addressing the Data Acquisition Paradigm in the Early Detection of Pediatric Foot Deformities

    Get PDF
    The analysis of plantar pressure through podometry has allowed analyzing and detecting different types of disorders and treatments in child patients. Early detection of an inadequate distribution of the patient’s weight can prevent serious injuries to the knees and lower spine. In this paper, an embedded system capable of detecting the presence of normal, flat, or arched footprints using resistive pressure sensors was proposed. For this purpose, both hardware- and software-related criteria were studied for an improved data acquisition through signal coupling and filtering processes. Subsequently, learning algorithms allowed us to estimate the type of footprint biomechanics in preschool and school children volunteers. As a result, the proposed algorithm achieved an overall classification accuracy of 97.2%. A flat feet share of 60% was encountered in a sample of 1000 preschool children. Similarly, flat feet were observed in 52% of a sample of 600 school children

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learningoriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise

    A non-invasive diagnostic system for early assessment of acute renal transplant rejection.

    Get PDF
    Early diagnosis of acute renal transplant rejection (ARTR) is of immense importance for appropriate therapeutic treatment administration. Although the current diagnostic technique is based on renal biopsy, it is not preferred due to its invasiveness, recovery time (1-2 weeks), and potential for complications, e.g., bleeding and/or infection. In this thesis, a computer-aided diagnostic (CAD) system for early detection of ARTR from 4D (3D + b-value) diffusion-weighted (DW) MRI data is developed. The CAD process starts from a 3D B-spline-based data alignment (to handle local deviations due to breathing and heart beat) and kidney tissue segmentation with an evolving geometric (level-set-based) deformable model. The latter is guided by a voxel-wise stochastic speed function, which follows from a joint kidney-background Markov-Gibbs random field model accounting for an adaptive kidney shape prior and for on-going visual kidney-background appearances. A cumulative empirical distribution of apparent diffusion coefficient (ADC) at different b-values of the segmented DW-MRI is considered a discriminatory transplant status feature. Finally, a classifier based on deep learning of a non-negative constrained stacked auto-encoder is employed to distinguish between rejected and non-rejected renal transplants. In the “leave-one-subject-out” experiments on 53 subjects, 98% of the subjects were correctly classified (namely, 36 out of 37 rejected transplants and 16 out of 16 nonrejected ones). Additionally, a four-fold cross-validation experiment was performed, and an average accuracy of 96% was obtained. These experimental results hold promise of the proposed CAD system as a reliable non-invasive diagnostic tool

    Machine Learning for Multimedia Communications

    Get PDF
    Machine learning is revolutionizing the way multimedia information is processed and transmitted to users. After intensive and powerful training, some impressive efficiency/accuracy improvements have been made all over the transmission pipeline. For example, the high model capacity of the learning-based architectures enables us to accurately model the image and video behavior such that tremendous compression gains can be achieved. Similarly, error concealment, streaming strategy or even user perception modeling have widely benefited from the recent learning-oriented developments. However, learning-based algorithms often imply drastic changes to the way data are represented or consumed, meaning that the overall pipeline can be affected even though a subpart of it is optimized. In this paper, we review the recent major advances that have been proposed all across the transmission chain, and we discuss their potential impact and the research challenges that they raise
    corecore