33 research outputs found

    A Design That Incorporates Adaptive Reservation into Mixed-Criticality Systems

    Get PDF

    ePAPI: Performance Application Programming Interface for Embedded Platforms

    Get PDF
    Performance Monitoring Counters (PMCs) have been traditionally used in the mainstream computing domain to perform debugging and optimization of software performance. PMCs are increasingly considered in embedded time-critical domains to collect in-depth information, e.g. cache misses and memory accesses, of software execution time on complex multicore platforms. In main-stream platforms, standardized specifications and applications like the Performance Application Programming Interface (PAPI) and perf have been proposed to deal with variable PMC support across platforms, by providing a shared interface for configuring and collecting traceable events. However, no equivalent solution exists for embedded critical processors for which the user is required to deal with low-level, platform-specific, and error-prone manipulation of PMC registers. In this paper, we address the need for a standardized PMC interface in the embedded domain, especially in view to support timing characterization of embedded platforms. We assess the compatibility of the PAPI interface with the PMC support available on the AURIX TC297, a reference automotive platform, and we implement and validate ePAPI, the first functionally-equivalent and low-overhead implementation of PAPI for the considered embedded platform

    Time-Staging Enhancement of Hybrid System Falsification

    Full text link
    Optimization-based falsification employs stochastic optimization algorithms to search for error input of hybrid systems. In this paper we introduce a simple idea to enhance falsification, namely time staging, that allows the time-causal structure of time-dependent signals to be exploited by the optimizers. Time staging consists of running a falsification solver multiple times, from one interval to another, incrementally constructing an input signal candidate. Our experiments show that time staging can dramatically increase performance in some realistic examples. We also present theoretical results that suggest the kinds of models and specifications for which time staging is likely to be effective

    Memory-processor co-scheduling in fixed priority systems

    Get PDF
    A major obstacle towards the adoption of multi-core platforms for real-time systems is given by the difficulties in characterizing the interference due to memory contention. The simple fact that multiple cores may simultaneously access shared memory and communication resources introduces a significant pessimism in the timing and schedulability analysis. To counter this problem, predictable execution models have been proposed splitting task executions into two consecutive phases: a memory phase in which the required instruction and data are pre-fetched to local memory (M-phase), and an execution phase in which the task is executed with no memory contention (C-phase). Decoupling memory and execution phases not only simplifies the timing analysis, but it also allows a more efficient (and predictable) pipelining of memory and execution phases through proper co-scheduling algorithms. In this paper, we take a further step towards the design of smart co-scheduling algorithms for sporadic real-time tasks complying with the M/C (memory-computation) model. We provide a theoretical framework that aims at tightly characterizing the schedulability improvement obtainable with the adopted M/C task model on a single-core systems. We identify a tight critical instant for M/C tasks scheduled with fixed priority, providing an exact response-time analysis with pseudo-polynomial complexity. We show in our experiments that a significant schedulability improvement may be obtained with respect to classic execution models, placing an important building block towards the design of more efficient partitioned multi-core systems

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors

    Blaming in component-based real-time systems

    Get PDF
    International audienceIn component-based safety-critical real-time systems it is crucial to determine which com-ponent(s) caused the violation of a required system-level safety property, be it to issue a precise alert, or to determine liability of component providers. In this paper we present an approach for blaming in real-time systems whose component specifications are given as timed automata. The analysis is based on a single execution trace violating a safety property P. We formalize blaming using counterfactual reasoning ("what would have been the outcome if component C had behaved correctly?") to distinguish component failures that actually con-tributed to the outcome from failures that had no impact on the violation of P. We then show how to effectively implement blaming by reducing it to a model-checking problem for timed automata, and demonstrate the feasibility of our approach on the models of a pacemaker and of a chemical reactor

    Memory-Processor Co-Scheduling in Fixed Priority Systems

    Get PDF
    ABSTRACT A major obstacle towards the adoption of multi-core platforms for real-time systems is given by the difficulties in characterizing the interference due to memory contention. The simple fact that multiple cores may simultaneously access shared memory and communication resources introduces a significant pessimism in the timing and schedulability analysis. To counter this problem, predictable execution models have been proposed splitting task executions into two consecutive phases: a memory phase in which the required instruction and data are pre-fetched to local memory (Mphase), and an execution phase in which the task is executed with no memory contention (C-phase). Decoupling memory and execution phases not only simplifies the timing analysis, but it also allows a more efficient (and predictable) pipelining of memory and execution phases through proper co-scheduling algorithms. In this paper, we take a further step towards the design of smart co-scheduling algorithms for sporadic real-time tasks complying with the M/C (memory-computation) model. We provide a theoretical framework that aims at tightly characterizing the schedulability improvement obtainable with the adopted M/C task model on a single-core systems. We identify a tight critical instant for M/C tasks scheduled with fixed priority, providing an exact response-time analysis with pseudo-polynomial complexity. We show in our experiments that a significant schedulability improvement may be obtained with respect to classic execution models, placing an important building block towards the design of more efficient partitioned multi-core systems

    A time-predictable many-core processor design for critical real-time embedded systems

    Get PDF
    Critical Real-Time Embedded Systems (CRTES) are in charge of controlling fundamental parts of embedded system, e.g. energy harvesting solar panels in satellites, steering and breaking in cars, or flight management systems in airplanes. To do so, CRTES require strong evidence of correct functional and timing behavior. The former guarantees that the system operates correctly in response of its inputs; the latter ensures that its operations are performed within a predefined time budget. CRTES aim at increasing the number and complexity of functions. Examples include the incorporation of \smarter" Advanced Driver Assistance System (ADAS) functionality in modern cars or advanced collision avoidance systems in Unmanned Aerial Vehicles (UAVs). All these new features, implemented in software, lead to an exponential growth in both performance requirements and software development complexity. Furthermore, there is a strong need to integrate multiple functions into the same computing platform to reduce the number of processing units, mass and space requirements, etc. Overall, there is a clear need to increase the computing power of current CRTES in order to support new sophisticated and complex functionality, and integrate multiple systems into a single platform. The use of multi- and many-core processor architectures is increasingly seen in the CRTES industry as the solution to cope with the performance demand and cost constraints of future CRTES. Many-cores supply higher performance by exploiting the parallelism of applications while providing a better performance per watt as cores are maintained simpler with respect to complex single-core processors. Moreover, the parallelization capabilities allow scheduling multiple functions into the same processor, maximizing the hardware utilization. However, the use of multi- and many-cores in CRTES also brings a number of challenges related to provide evidence about the correct operation of the system, especially in the timing domain. Hence, despite the advantages of many-cores and the fact that they are nowadays a reality in the embedded domain (e.g. Kalray MPPA, Freescale NXP P4080, TI Keystone II), their use in CRTES still requires finding efficient ways of providing reliable evidence about the correct operation of the system. This thesis investigates the use of many-core processors in CRTES as a means to satisfy performance demands of future complex applications while providing the necessary timing guarantees. To do so, this thesis contributes to advance the state-of-the-art towards the exploitation of parallel capabilities of many-cores in CRTES contributing in two different computing domains. From the hardware domain, this thesis proposes new many-core designs that enable deriving reliable and tight timing guarantees. From the software domain, we present efficient scheduling and timing analysis techniques to exploit the parallelization capabilities of many-core architectures and to derive tight and trustworthy Worst-Case Execution Time (WCET) estimates of CRTES.Los sistemas críticos empotrados de tiempo real (en ingles Critical Real-Time Embedded Systems, CRTES) se encargan de controlar partes fundamentales de los sistemas integrados, e.g. obtención de la energía de los paneles solares en satélites, la dirección y frenado en automóviles, o el control de vuelo en aviones. Para hacerlo, CRTES requieren fuerte evidencias del correcto comportamiento funcional y temporal. El primero garantiza que el sistema funciona correctamente en respuesta de sus entradas; el último asegura que sus operaciones se realizan dentro de unos limites temporales establecidos previamente. El objetivo de los CRTES es aumentar el número y la complejidad de las funciones. Algunos ejemplos incluyen los sistemas inteligentes de asistencia a la conducción en automóviles modernos o los sistemas avanzados de prevención de colisiones en vehiculos aereos no tripulados. Todas estas nuevas características, implementadas en software,conducen a un crecimiento exponencial tanto en los requerimientos de rendimiento como en la complejidad de desarrollo de software. Además, existe una gran necesidad de integrar múltiples funciones en una sóla plataforma para así reducir el número de unidades de procesamiento, cumplir con requisitos de peso y espacio, etc. En general, hay una clara necesidad de aumentar la potencia de cómputo de los actuales CRTES para soportar nueva funcionalidades sofisticadas y complejas e integrar múltiples sistemas en una sola plataforma. El uso de arquitecturas multi- y many-core se ve cada vez más en la industria CRTES como la solución para hacer frente a la demanda de mayor rendimiento y las limitaciones de costes de los futuros CRTES. Las arquitecturas many-core proporcionan un mayor rendimiento explotando el paralelismo de aplicaciones al tiempo que proporciona un mejor rendimiento por vatio ya que los cores se mantienen más simples con respecto a complejos procesadores de un solo core. Además, las capacidades de paralelización permiten programar múltiples funciones en el mismo procesador, maximizando la utilización del hardware. Sin embargo, el uso de multi- y many-core en CRTES también acarrea ciertos desafíos relacionados con la aportación de evidencias sobre el correcto funcionamiento del sistema, especialmente en el ámbito temporal. Por eso, a pesar de las ventajas de los procesadores many-core y del hecho de que éstos son una realidad en los sitemas integrados (por ejemplo Kalray MPPA, Freescale NXP P4080, TI Keystone II), su uso en CRTES aún precisa de la búsqueda de métodos eficientes para proveer evidencias fiables sobre el correcto funcionamiento del sistema. Esta tesis ahonda en el uso de procesadores many-core en CRTES como un medio para satisfacer los requisitos de rendimiento de aplicaciones complejas mientras proveen las garantías de tiempo necesarias. Para ello, esta tesis contribuye en el avance del estado del arte hacia la explotación de many-cores en CRTES en dos ámbitos de la computación. En el ámbito del hardware, esta tesis propone nuevos diseños many-core que posibilitan garantías de tiempo fiables y precisas. En el ámbito del software, la tesis presenta técnicas eficientes para la planificación de tareas y el análisis de tiempo para aprovechar las capacidades de paralelización en arquitecturas many-core, y también para derivar estimaciones de peor tiempo de ejecución (Worst-Case Execution Time, WCET) fiables y precisas
    corecore