51 research outputs found

    An Ethical Framework for Artificial Intelligence and Sustainable Cities

    Get PDF
    The digital revolution has brought ethical crossroads of technology and behavior, especially in the realm of sustainable cities. The need for a comprehensive and constructive ethical framework is emerging as digital platforms encounter trouble to articulate the transformations required to accomplish the sustainable development goal (SDG) 11 (on sustainable cities), and the remainder of the related SDGs. The unequal structure of the global system leads to dynamic and systemic problems, which have a more significant impact on those that are most vulnerable. Ethical frameworks based only on the individual level are no longer sufficient as they lack the necessary articulation to provide solutions to the new systemic challenges. A new ethical vision of digitalization must comprise the understanding of the scales and complex interconnections among SDGs and the ongoing socioeconomic and industrial revolutions. Many of the current social systems are internally fragile and very sensitive to external factors and threats, which lead to unethical situations. Furthermore, the multilayered net-like social tissue generates clusters of influence and leadership that prevent communities from a proper development. Digital technology has also had an impact at the individual level, posing several risks including a more homogeneous and predictable humankind. To preserve the core of humanity, we propose an ethical framework to empower individuals centered on the cities and interconnected with the socioeconomic ecosystem and the environment through the complex relationships of the SDGs. Only by combining human-centered and collectiveness-oriented digital development will it be possible to construct new social models and interactions that are ethical. Thus, it is necessary to combine ethical principles with the digital innovation undergoing in all the dimensions of sustainability

    Micro-Hydropower in Nepal:Analysing the Project Process to Understand Drivers that Strengthen and Weaken Sustainability

    Get PDF
    Evaluating the sustainable operation of community-owned and community-operated renewable energy projects is complex. The development of a project often depends on the actions of diverse stakeholders, including the government, industry and communities. Throughout the project cycle, these interrelated actions impact the sustainability of the project. In this paper, the typical project cycle of a micro-hydropower plant in Nepal is used to demonstrate that key events throughout the project cycle affect a plant’s ability to operate sustainably. Through a critical analysis of the available literature, policy and project documentation and interviews with manufacturers, drivers that affect the sustainability of plants are found. Examples include weak specification of civil components during tendering, quality control issues during manufacture, poor quality of construction and trained operators leaving their position. Opportunities to minimise both the occurrence and the severity of threats to sustainability are identified. For the micro-hydropower industry in Nepal, recommendations are made for specific actions by the relevant stakeholders at appropriate moments in the project cycle. More broadly, the findings demonstrate that the complex nature of developing community energy projects requires a holistic consideration of the complete project process

    The challenge of long-distance over-the-air wireless links in the ocean: a survey on water-to-water and water-to-land miot communication

    Get PDF
    Robust wireless communication networks are a cornerstone of the modern world, allowing data to be transferred quickly and reliably. Establishing such a network at sea, a Maritime Internet of Things (MIoT), would enhance services related to safety and security at sea, environmental protection, and research. However, given the remote and harsh nature of the sea, installing robust wireless communication networks with adequate data rates and low cost is a difficult endeavor. This paper reviews recent MIoT systems developed and deployed by researchers and engineers over the past few years. It contains an analysis of short-range and long-range over-the-air radio-frequency wireless communication protocols and the synergy between these two in the pursuit of an MIoT. The goal of this paper is to serve as a go-to guide for engineers and researchers that need to implement a wireless sensor network at sea. The selection criterion for the papers included in this review was that the implemented wireless communication networks were tested in a real-world scenario.cofunded by the project K2D: Knowledge and Data from the Deep to Space with reference POCI-01-0247-FEDER-045941, cofinanced by the European Regional Development Fund (ERDF), through the Operational Program for Competitiveness and Internationalization (COMPETE2020), and by the Portuguese Foundation for Science and Technology (FCT) under the MIT Portugal Program. This work is also cofinanced by national funds through FCT–Fundação para a Ciência e Tecnologia, I.P., under project SONDA (PTDC/EME-SIS/1960/2020). T.M. thanks FCT for grant SFRH/BD/145070/201

    The long road to universal electrification:A critical look at present pathways and challenges

    Get PDF
    Nearly 840 million people still lack access to electricity, while over a billion more have an unreliable electricity connection. In this article, the three different electrification pathways-grid extension, centralized microgrids, and standalone solar-based solutions, such as pico-solar and solar home systems (SHS)-are critically examined while understanding their relative merits and demerits. Grid extension can provide broad scale access at low levelized costs but requires a certain electricity demand threshold and population density to justify investments. To a lesser extent, centralized (off-grid) microgrids also require a minimum demand threshold and knowledge of the electricity demand. Solar-based solutions are the main focus in terms of off-grid electrification in this article, given the equatorial/tropical latitudes of the un(der-)electrified regions. In recent times, decentralized solar-based off-grid solutions, such as pico-solar and SHS, have shown the highest adoption rates and promising impetus with respect to basic lighting and electricity for powering small appliances. However, the burning question is-from lighting a million to empowering a billion-can solar home systems get us there?The two main roadblocks for SHS are discussed, and the requirements from the ideal electrification pathway are introduced. A bottom-up, interconnected SHS-based electrification pathway is proposed as the missing link among the present electrification pathways.Management SupportDC systems, Energy conversion & StorageElectrical Sustainable Energ
    • …
    corecore