11 research outputs found

    Untersuchungen zur Risikominimierungstechnik Stealth Computing für verteilte datenverarbeitende Software-Anwendungen mit nutzerkontrollierbar zusicherbaren Eigenschaften

    Get PDF
    Die Sicherheit und Zuverlässigkeit von Anwendungen, welche schutzwürdige Daten verarbeiten, lässt sich durch die geschützte Verlagerung in die Cloud mit einer Kombination aus zielgrößenabhängiger Datenkodierung, kontinuierlicher mehrfacher Dienstauswahl, dienstabhängiger optimierter Datenverteilung und kodierungsabhängiger Algorithmen deutlich erhöhen und anwenderseitig kontrollieren. Die Kombination der Verfahren zu einer anwendungsintegrierten Stealth-Schutzschicht ist eine notwendige Grundlage für die Konstruktion sicherer Anwendungen mit zusicherbaren Sicherheitseigenschaften im Rahmen eines darauf angepassten Softwareentwicklungsprozesses.:1 Problemdarstellung 1.1 Einführung 1.2 Grundlegende Betrachtungen 1.3 Problemdefinition 1.4 Einordnung und Abgrenzung 2 Vorgehensweise und Problemlösungsmethodik 2.1 Annahmen und Beiträge 2.2 Wissenschaftliche Methoden 2.3 Struktur der Arbeit 3 Stealth-Kodierung für die abgesicherte Datennutzung 3.1 Datenkodierung 3.2 Datenverteilung 3.3 Semantische Verknüpfung verteilter kodierter Daten 3.4 Verarbeitung verteilter kodierter Daten 3.5 Zusammenfassung der Beiträge 4 Stealth-Konzepte für zuverlässige Dienste und Anwendungen 4.1 Überblick über Plattformkonzepte und -dienste 4.2 Netzwerkmultiplexerschnittstelle 4.3 Dateispeicherschnittstelle 4.4 Datenbankschnittstelle 4.5 Stromspeicherdienstschnittstelle 4.6 Ereignisverarbeitungsschnittstelle 4.7 Dienstintegration 4.8 Entwicklung von Anwendungen 4.9 Plattformäquivalente Cloud-Integration sicherer Dienste und Anwendungen 4.10 Zusammenfassung der Beiträge 5 Szenarien und Anwendungsfelder 5.1 Online-Speicherung von Dateien mit Suchfunktion 5.2 Persönliche Datenanalyse 5.3 Mehrwertdienste für das Internet der Dinge 6 Validierung 6.1 Infrastruktur für Experimente 6.2 Experimentelle Validierung der Datenkodierung 6.3 Experimentelle Validierung der Datenverteilung 6.4 Experimentelle Validierung der Datenverarbeitung 6.5 Funktionstüchtigkeit und Eigenschaften der Speicherdienstanbindung 6.6 Funktionstüchtigkeit und Eigenschaften der Speicherdienstintegration 6.7 Funktionstüchtigkeit und Eigenschaften der Datenverwaltung 6.8 Funktionstüchtigkeit und Eigenschaften der Datenstromverarbeitung 6.9 Integriertes Szenario: Online-Speicherung von Dateien 6.10 Integriertes Szenario: Persönliche Datenanalyse 6.11 Integriertes Szenario: Mobile Anwendungen für das Internet der Dinge 7 Zusammenfassung 7.1 Zusammenfassung der Beiträge 7.2 Kritische Diskussion und Bewertung 7.3 Ausblick Verzeichnisse Tabellenverzeichnis Abbildungsverzeichnis Listings Literaturverzeichnis Symbole und Notationen Software-Beiträge für native Cloud-Anwendungen Repositorien mit ExperimentdatenThe security and reliability of applications processing sensitive data can be significantly increased and controlled by the user by a combination of techniques. These encompass a targeted data coding, continuous multiple service selection, service-specific optimal data distribution and coding-specific algorithms. The combination of the techniques towards an application-integrated stealth protection layer is a necessary precondition for the construction of safe applications with guaranteeable safety properties in the context of a custom software development process.:1 Problemdarstellung 1.1 Einführung 1.2 Grundlegende Betrachtungen 1.3 Problemdefinition 1.4 Einordnung und Abgrenzung 2 Vorgehensweise und Problemlösungsmethodik 2.1 Annahmen und Beiträge 2.2 Wissenschaftliche Methoden 2.3 Struktur der Arbeit 3 Stealth-Kodierung für die abgesicherte Datennutzung 3.1 Datenkodierung 3.2 Datenverteilung 3.3 Semantische Verknüpfung verteilter kodierter Daten 3.4 Verarbeitung verteilter kodierter Daten 3.5 Zusammenfassung der Beiträge 4 Stealth-Konzepte für zuverlässige Dienste und Anwendungen 4.1 Überblick über Plattformkonzepte und -dienste 4.2 Netzwerkmultiplexerschnittstelle 4.3 Dateispeicherschnittstelle 4.4 Datenbankschnittstelle 4.5 Stromspeicherdienstschnittstelle 4.6 Ereignisverarbeitungsschnittstelle 4.7 Dienstintegration 4.8 Entwicklung von Anwendungen 4.9 Plattformäquivalente Cloud-Integration sicherer Dienste und Anwendungen 4.10 Zusammenfassung der Beiträge 5 Szenarien und Anwendungsfelder 5.1 Online-Speicherung von Dateien mit Suchfunktion 5.2 Persönliche Datenanalyse 5.3 Mehrwertdienste für das Internet der Dinge 6 Validierung 6.1 Infrastruktur für Experimente 6.2 Experimentelle Validierung der Datenkodierung 6.3 Experimentelle Validierung der Datenverteilung 6.4 Experimentelle Validierung der Datenverarbeitung 6.5 Funktionstüchtigkeit und Eigenschaften der Speicherdienstanbindung 6.6 Funktionstüchtigkeit und Eigenschaften der Speicherdienstintegration 6.7 Funktionstüchtigkeit und Eigenschaften der Datenverwaltung 6.8 Funktionstüchtigkeit und Eigenschaften der Datenstromverarbeitung 6.9 Integriertes Szenario: Online-Speicherung von Dateien 6.10 Integriertes Szenario: Persönliche Datenanalyse 6.11 Integriertes Szenario: Mobile Anwendungen für das Internet der Dinge 7 Zusammenfassung 7.1 Zusammenfassung der Beiträge 7.2 Kritische Diskussion und Bewertung 7.3 Ausblick Verzeichnisse Tabellenverzeichnis Abbildungsverzeichnis Listings Literaturverzeichnis Symbole und Notationen Software-Beiträge für native Cloud-Anwendungen Repositorien mit Experimentdate

    Principles of building scalable and robust event-based systems

    Get PDF
    Event-based systems are of tremendous importance for a wide range of distributed applications interacting with physical processes, e.g., traffic management, financial services, manufacturing processes, or health services. Event-based systems support to monitor, analyze events of interest efficiently. Therefore, they enable distributed applications to respond to detected events in the form of appropriate actions. Event-based systems provide as part of the publish/subscribe paradigm, mechanisms for the scalable integration of a variety of information sources, e.g., dedicated sensor networks, mobile devices, or cameras. In addition, event-based systems allow as part of the event processing paradigm to detect correlations between events from distinct information sources. Event-based systems ensure two important forms of decoupling of importance building scalable distributed applications. Decoupling producers of information and consumers of information by ensuring that neither producers need to keep state on the interested consumers nor consumers need to know the producers of information, is a key principle for scalable communications. Furthermore, a step-wise correlation from primary events to events of importance for distributed applications is an enabler to specify distributed applications independent from the underlying sensor infrastructure at hand. In this thesis, we present and discuss principles of building scalable and robust event-based systems. On the one hand, this requires distributed mechanisms to fulfill a wide spectrum of distinct application requirements, e.g., being bandwidth efficient and providing events with low end-to-end latency. On the other hand, the underlying mechanisms for event-based systems need to deal with many levels of dynamics, e. g., dynamics in the rate at which events are produced, dynamics in the interest of producers and consumers, mobility of consumer and producer, failures and changing security privileges to access events. In the context of mechanisms for event distribution, operator execution, operator migration, operator recovery and secure access to events, we highlight problems in the scalable and robust design of those mechanisms. We give an overview on related work in the field and present in a tutorial manner the ideas of six own contributions for realizing distributed event-based systems

    Scheduling & routing time-triggered traffic in time-sensitive networks

    Get PDF
    The application of recent advances in computing, cognitive and networking technologies in manufacturing has triggered the so-called fourth industrial revolution, also referred to as Industry 4.0. Smart and flexible manufacturing systems are being conceived as a part of the Industry 4.0 initiative to meet the challenging requirements of the modern day manufacturers, e.g., production batch sizes of one. The information and communication technologies (ICT) infrastructure in such smart factories is expected to host heterogeneous applications ranging from the time-sensitive cyber-physical systems regulating physical processes in the manufacturing shopfloor to the soft real-time analytics applications predicting anomalies in the assembly line. Given the diverse demands of the applications, a single converged network providing different levels of communication guarantees to the applications based on their requirements is desired. Ethernet, on account of its ubiquity and its steadily growing performance along with shrinking costs, has emerged as a popular choice as a converged network. However, Ethernet networks, primarily designed for best-effort communication services, cannot provide strict guarantees like bounded end-to-end latency and jitter for real-time traffic without additional enhancements. Two major standardization bodies, viz., the IEEE Time-sensitive Networking (TSN) Task Group (TG) and the IETF Deterministic Networking (DetNets) Working Group are striving towards equipping Ethernet networks with mechanisms that would enable it to support different classes of real-time traffic. In this thesis, we focus on handling the time-triggered traffic (primarily periodic in nature) stemming from the hard real-time cyber-physical systems embedded in the manufacturing shopfloor over Ethernet networks. The basic approach for this is to schedule the transmissions of the time-triggered data streams appropriately through the network and ensure that the allocated schedules are adhered with. This approach leverages the possibility to precisely synchronize the clocks of the network participants, i.e., end systems and switches, using time synchronization protocols like the IEEE 1588 Precision Time Protocol (PTP). Based on the capabilities of the network participants, the responsibility of enforcing these schedules can be distributed. An important point to note is that the network utilization with respect to the time-triggered data streams depends on the computed schedules. Furthermore, the routing of the time-triggered data streams also influences the computed transmission schedules, and thus, affects the network utilization. The question however remains as to how to compute transmission schedules for time-triggered data streams along with their routes so that an optimal network utilization can be achieved. We explore, in this thesis, the scheduling and routing problems with respect to the time-triggered data streams in Ethernet networks. The recently published IEEE 802.1Qbv standard from the TSN-TG provides programmable gating mechanisms for the switches enabling them to schedule transmissions. Meanwhile, the extensions specified in the IEEE 802.1Qca standard or the primitives provided by OpenFlow, the popular southbound software-defined networking (SDN) protocol, can be used for gaining an explicit control over the routing of the data streams. Using these mechanisms, the responsibility of enforcing transmission schedules can be taken over by the end systems as well as the switches in the network. Alternatively, the scheduling can be enforced only by the end systems or only by the switches. Furthermore, routing alone can also be used to isolate time-triggered data streams, and thus, bound the latency and jitter experienced by the data streams in absence of synchronized clocks in the network. For each of the aforementioned cases, we formulate the scheduling and routing problem using Integer Linear Programming (ILP) for static as well as dynamic scenarios. The static scenario deals with the computation of schedules and routes for time-triggered data streams with a priori knowledge of their specifications. Here, we focus on computing schedules and routes that are optimal with respect to the network utilization. Given that the scheduling problems in the static setting have a high time-complexity, we also present efficient heuristics to approximate the optimal solution. With the dynamic scheduling problem, we address the modifications to the computed transmission schedules for adding further or removing already scheduled time-triggered data streams. Here, the focus lies on reducing the runtime of the scheduling and routing algorithms, and thus, have lower set-up times for adding new data streams into the network

    Replicated execution of workflows

    Get PDF
    Workflows are the de facto standard for managing and optimizing business processes. Workflows allow businesses to automate interactions between business locations and partners residing anywhere on the planet. This, however, requires the workflows to be executed in a distributed and dynamic environment, where device and communication failures occur quite frequently. In case that a workflow execution becomes unavailable through such failures, the business operations that rely on the workflow might be hindered or even stopped, implying the loss of money. Consequently, availability is a key concern when using workflows in dynamic environments. In this thesis, we propose replication schemes for workflow engines to ensure the availability of the workflows that are executed by these engines. Of course, a workflow that is executed by a replicated workflow engine has to yield the same result as a non-replicated execution of that workflow. To this end, we formally define the equivalence of a replicated and a non-replicated execution called Single-Execution-Equivalence. Subsequently, we present replication schemes for both imperative and declarative workflow languages. Imperative workflow languages, such as the Web Service Business Process Execution Language (WS-BPEL), specify the execution order of activities through an ordering relation and are the predominant way of specifying workflow models. We implement a proof-of-concept for demonstrating the compatibility of our replication schemes with current (imperative) workflow technology. Declarative workflow languages provide greater flexibility by allowing the reordering of the activities within a workflow at run-time. We exploit this by executing differently ordered replicas on several nodes in the network for improving availability further

    Mobility-awareness in complex event processing systems

    Get PDF
    The proliferation and vast deployment of mobile devices and sensors over the last couple of years enables a huge number of Mobile Situation Awareness (MSA) applications. These applications need to react in near real-time to situations in the environment of mobile objects like vehicles, pedestrians, or cargo. To this end, Complex Event Processing (CEP) is becoming increasingly important as it allows to scalably detect situations “on-the-fly” by continously processing distributed sensor data streams. Furthermore, recent trends in communication networks promise high real-time conformance to CEP systems by processing sensor data streams on distributed computing resources at the edge of the network, where low network latencies can be achieved. Yet, supporting MSA applications with a CEP middleware that utilizes distributed computing resources proves to be challenging due to the dynamics of mobile devices and sensors. In particular, situations need to be efficiently, scalably, and consistently detected with respect to ever-changing sensors in the environment of a mobile object. Moreover, the computing resources that provide low latencies change with the access points of mobile devices and sensors. The goal of this thesis is to provide concepts and algorithms to i) continuously detect situations that recently occurred close to a mobile object, ii) support bandwidth and computational efficient detections of such situations on distributed computing resources, and iii) support consistent, low latency, and high quality detections of such situations. To this end, we introduce the distributed Mobile CEP (MCEP) system which automatically adapts the processing of sensor data streams according to a mobile object’s location. MCEP provides an expressive, location-aware query model for situations that recently occurred at a location close to a mobile object. MCEP significantly reduces latency, bandwidth, and processing overhead by providing on-demand and opportunistic adaptation algorithms to dynamically assign event streams to queries of the MCEP system. Moreover, MCEP incorporates algorithms to adapt the deployment of MCEP queries in a network of computing resources. This way, MCEP supports latency-sensitive, large-scale deployments of MSA applications and ensures a low network utilization while mobile objects change their access points to the system. MCEP also provides methods to increase the scalability in terms of deployed MCEP queries by reusing event streams and computations for detecting common situations for several mobile objects

    Privacy-Aware and Reliable Complex Event Processing in the Internet of Things - Trust-Based and Flexible Execution of Event Processing Operators in Dynamic Distributed Environments

    Get PDF
    The Internet of Things (IoT) promises to be an enhanced platform for supporting a heterogeneous range of context-aware applications in the fields of traffic monitoring, healthcare, and home automation, to name a few. The essence of the IoT is in the inter-networking of distributed information sources and the analysis of their data to understand the interactions between the physical objects, their users, and their environment. Complex Event Processing (CEP) is a cogent paradigm to infer higher-level information from atomic event streams (e.g., sensor data in the IoT). Using functional computing modules called operators (e.g., filters, aggregates, sequencers), CEP provides for an efficient and low-latency processing environment. Privacy and mobility support for context processing is gaining immense importance in the age of the IoT. However, new mobile communication paradigms - like Device-to-Device (D2D) communication - that are inherent to the IoT, must be enhanced to support a privacy-aware and reliable execution of CEP operators on mobile devices. It is crucial to preserve the differing privacy constraints of mobile users, while allowing for flexible and collaborative processing. Distributed mobile environments are also susceptible to adversary attacks, given the lack of sufficient control over the processing environment. Lastly, ensuring reliable and accurate CEP becomes a serious challenge due to the resource-constrained and dynamic nature of the IoT. In this thesis, we design and implement a privacy-aware and reliable CEP system that supports distributed processing of context data, by flexibly adapting to the dynamic conditions of a D2D environment. To this end, the main contributions, which form the key components of the proposed system, are three-fold: 1) We develop a method to analyze the communication characteristics of the users and derive the type and strength of their relationships. By doing so, we utilize the behavioral aspects of user relationships to automatically derive differing privacy constraints of the individual users. 2) We employ the derived privacy constraints as trust relations between users to execute CEP operators on mobile devices in a privacy-aware manner. In turn, we develop a trust management model called TrustCEP that incorporates a robust trust recommendation scheme to prevent adversary attacks and allow for trust evolution. 3) Finally, to account for reliability, we propose FlexCEP, a fine-grained flexible approach for CEP operator migration, such that the CEP system adapts to the dynamic nature of the environment. By extracting intermediate operator state and by leveraging device mobility and instantaneous characteristics, FlexCEP provides a flexible CEP execution model under varying network conditions. Overall, with the help of thorough evaluations of the above three contributions, we show how the proposed distributed CEP system can satisfy the requirements established above for a privacy-aware and reliable IoT environment

    Secure Communication in Disaster Scenarios

    Get PDF
    Während Naturkatastrophen oder terroristischer Anschläge ist die bestehende Kommunikationsinfrastruktur häufig überlastet oder fällt komplett aus. In diesen Situationen können mobile Geräte mithilfe von drahtloser ad-hoc- und unterbrechungstoleranter Vernetzung miteinander verbunden werden, um ein Notfall-Kommunikationssystem für Zivilisten und Rettungsdienste einzurichten. Falls verfügbar, kann eine Verbindung zu Cloud-Diensten im Internet eine wertvolle Hilfe im Krisen- und Katastrophenmanagement sein. Solche Kommunikationssysteme bergen jedoch ernsthafte Sicherheitsrisiken, da Angreifer versuchen könnten, vertrauliche Daten zu stehlen, gefälschte Benachrichtigungen von Notfalldiensten einzuspeisen oder Denial-of-Service (DoS) Angriffe durchzuführen. Diese Dissertation schlägt neue Ansätze zur Kommunikation in Notfallnetzen von mobilen Geräten vor, die von der Kommunikation zwischen Mobilfunkgeräten bis zu Cloud-Diensten auf Servern im Internet reichen. Durch die Nutzung dieser Ansätze werden die Sicherheit der Geräte-zu-Geräte-Kommunikation, die Sicherheit von Notfall-Apps auf mobilen Geräten und die Sicherheit von Server-Systemen für Cloud-Dienste verbessert
    corecore