1,079 research outputs found

    EyeSpot: leveraging gaze to protect private text content on mobile devices from shoulder surfing

    Get PDF
    As mobile devices allow access to an increasing amount of private data, using them in public can potentially leak sensitive information through shoulder surfing. This includes personal private data (e.g., in chat conversations) and business-related content (e.g., in emails). Leaking the former might infringe on users’ privacy, while leaking the latter is considered a breach of the EU’s General Data Protection Regulation as of May 2018. This creates a need for systems that protect sensitive data in public. We introduce EyeSpot, a technique that displays content through a spot that follows the user’s gaze while hiding the rest of the screen from an observer’s view through overlaid masks. We explore different configurations for EyeSpot in a user study in terms of users’ reading speed, text comprehension, and perceived workload. While our system is a proof of concept, we identify crystallized masks as a promising design candidate for further evaluation with regard to the security of the system in a shoulder surfing scenario

    CrowdHiLite: A Peer Review Service to Support Serious Reading on the Screen

    Get PDF
    The advent of smart devices and consumerisation of IT has produced a significant and permanent shift away from print-based reading to digital reading. This, in turn, has changed people’s reading behaviours and suggests that adapted mechanisms should be considered to support digital reading. It is particularly important for novice readers who need to read in-depth scientific literature in their chosen field. In this paper, we propose CrowdHiLite, a novel service architecture that allows expert readers to provide suggestion on individual readers’ highlights to support their reading on the screen through the use of crowdsourcing technique. A demonstration was also provided to show how it would work in real world. A preliminary experiment comparing novice readers’ reading performance with expert rated highlights and normal highlights on the same document found improved reading efficiency and comprehension with the former

    HCI as a means to prosociality in the economy

    Get PDF
    HCI research often involves intervening in the economic lives of people, but researchers only rarely give explicit consideration to what actually constitutes prosociality in the economy. Much has been said previously regarding sustainability but this has largely focused on environmental rather than interpersonal relations. This paper provides an analysis of how prosocial HCI has been discussed and continues to be defined as a research field. Based on a corpus of published works, we describe a variety of genres of work relating to prosocial HCI. Key intellectual differences are explored, including the epistemological and ethical positions involved in designing for prosocial outcomes as well as how HCI researchers posit economic decision-making. Finally, emerging issues and opportunities for further debate and collaboration are discussed in turn

    The Challenges in Modeling Human Performance in 3D Space with Fitts’ Law

    Get PDF
    With the rapid growth in virtual reality technologies, object interaction is becoming increasingly more immersive, elucidating human perception and leading to promising directions towards evaluating human performance under different settings. This spike in technological growth exponentially increased the need for a human performance metric in 3D space. Fitts' law is perhaps the most widely used human prediction model in HCI history attempting to capture human movement in lower dimensions. Despite the collective effort towards deriving an advanced extension of a 3D human performance model based on Fitts' law, a standardized metric is still missing. Moreover, most of the extensions to date assume or limit their findings to certain settings, effectively disregarding important variables that are fundamental to 3D object interaction. In this review, we investigate and analyze the most prominent extensions of Fitts' law and compare their characteristics pinpointing to potentially important aspects for deriving a higher-dimensional performance model. Lastly, we mention the complexities, frontiers as well as potential challenges that may lay ahead.Comment: Accepted at ACM CHI 2021 Conference on Human Factors in Computing Systems (CHI '21 Extended Abstracts

    How does HCI Understand Human Autonomy and Agency?

    Get PDF
    Funding Information: Funded by the European Union (ERC, THEORYCRAFT, 101043198). Publisher Copyright: © 2023 Owner/Author.Human agency and autonomy have always been fundamental concepts in HCI. New developments, including ubiquitous AI and the growing integration of technologies into our lives, make these issues ever pressing, as technologies increase their ability to influence our behaviours and values. However, in HCI understandings of autonomy and agency remain ambiguous. Both concepts are used to describe a wide range of phenomena pertaining to sense-of-control, material independence, and identity. It is unclear to what degree these understandings are compatible, and how they support the development of research programs and practical interventions. We address this by reviewing 30 years of HCI research on autonomy and agency to identify current understandings, open issues, and future directions. From this analysis, we identify ethical issues, and outline key themes to guide future work. We also articulate avenues for advancing clarity and specificity around these concepts, and for coordinating integrative work across different HCI communities.Peer reviewe

    Embracing first-person perspectives in soma-based design

    Get PDF
    This article belongs to the Special Issue Tangible and Embodied InteractionA set of prominent designers embarked on a research journey to explore aesthetics in movement-based design. Here we unpack one of the design sensitivities unique to our practice: A strong first person perspective-where the movements, somatics and aesthetic sensibilities of the designer, design researcher and user are at the forefront. We present an annotated portfolio of design exemplars and a brief introduction to some of the design methods and theory we use, together substantiating and explaining the first-person perspective. At the same time, we show how this felt dimension, despite its subjective nature, is what provides rigor and structure to our design research. Our aim is to assist researchers in soma-based design and designers wanting to consider the multiple facets when designing for the aesthetics of movement. The applications span a large field of designs, including slow introspective, contemplative interactions, arts, dance, health applications, games, work applications and many others

    MindTouch: Effect of Mindfulness Meditation on Mid-Air Tactile Perception

    Get PDF
    As we constantly seek to improve and expand upon the capabilities of technology, we frequently wonder whether we use technology to its fullest extent. Studies indicate that increasing our awareness and mindfulness of our senses may lead to a journey of unexplored experiences. In this paper, we focus on the perception of mid-air haptics stimuli and whether it can be improved through mindfulness meditation. We have conducted an experiment with 22 participants given the task to recognize digits 0 to 9 drawn on their palms using a mid-air haptic device under two conditions - with and without prior mindfulness meditation. Results show that for frequencies targeting both Meissner (40 Hz) and Pacinian (200 Hz) receptors, meditation significantly improves performance of the participants, as well as increases their confidence. This suggests that including a short meditation step in haptic user interfaces could lead to improved system performance and user satisfaction

    PolySurface:a design approach for rapid prototyping of shape-changing displays using semi-solid surfaces

    Get PDF
    We present a design approach for rapid fabrication of high fidelity interactive shape-changing displays using bespoke semi-solid surfaces. This is achieved by segmenting virtual representations of the given data and mapping it to a dynamic physical polygonal surface. First, we establish the design and fabrication approach for generating semi-solid reconfigurable surfaces. Secondly, we demonstrate the generalizability of this approach by presenting design sessions using datasets provided by experts from a diverse range of domains. Thirdly, we evaluate user engagement with the prototype hardware systems that are built. We learned that all participants, all of whom had no previous interaction with shape-changing displays, were able to successfully design interactive hardware systems that physically represent data specific to their work. Finally, we reflect on the content generated to understand if our approach is effective at representing intended output based on a set of user defined functionality requirements
    • 

    corecore