54 research outputs found

    Operating System Concepts for Reconfigurable Computing: Review and Survey

    Get PDF
    One of the key future challenges for reconfigurable computing is to enable higher design productivity and a more easy way to use reconfigurable computing systems for users that are unfamiliar with the underlying concepts. One way of doing this is to provide standardization and abstraction, usually supported and enforced by an operating system. This article gives historical review and a summary on ideas and key concepts to include reconfigurable computing aspects in operating systems. The article also presents an overview on published and available operating systems targeting the area of reconfigurable computing. The purpose of this article is to identify and summarize common patterns among those systems that can be seen as de facto standard. Furthermore, open problems, not covered by these already available systems, are identified

    How to efficiently reconfigure tunable lookup tables for dynamic circuit specialization

    Get PDF
    Dynamic Circuit Specialization is used to optimize the implementation of a parameterized application on an FPGA. Instead of implementing the parameters as regular inputs, in the DCS approach these inputs are implemented as constants. When the parameter values change, the design is reoptimized for the new constant values by reconfiguring the FPGA. This allows faster and more resource-efficient implementation but investigations have shown that reconfiguration time is the major limitation for DCS implementation on Xilinx FPGAs. The limitation arises from the use of inefficient reconfiguration methods in conventional DCS implementation. To address this issue, we propose different approaches to reduce the reconfiguration time drastically and improve the reconfiguration speed. In this context, this paper presents the use of custom reconfiguration controllers and custom reconfiguration software drivers, along with placement constraints to shorten the reconfiguration time. Our results show an improvement in the reconfiguration speed by at least a factor 14 by using Xilinx reconfiguration controller along with placement constraints. However, the improvement can go up to a factor 40 with the combination of a custom reconfiguration controller, custom software drivers, and placement constraints. We also observe depreciation in the system’s performance by at least 6% due to placement constraints

    Класифікація та архітектурні особливості програмованих мультипроцесорних систем-на-кристалі

    Get PDF
    Provided general information on embedded multiprocessor systems-on-chip based on FPGA (FPGA-MPSoC). Completed a comprehensive analysis of the architectural features and provided Shih rock classification FPGA-MPSoC. Powered overview of recent research in the development of FPGA-MPSoC. A wide circle of such systems in order to study trends in architecture and all problems solvedПредоставлено общую информацию о встроенных мультипроцессорных систем-на-кристалле на базе ПЛИС (FPGA-MPSoC). Выполнено всесторонний анализ архитектурных особенностей и предоставлена ​​широкая классификация FPGA-MPSoC. Приведены обзор последних исследований в области разработки FPGA-MPSoC. Представлен широкий круг таких систем с целью исследования всех тенденциях архитектуры и решаемых задачПредоставлено общую информацию о встроенных мультипроцессорных систем-на-кристалле на базе ПЛИС (FPGA-MPSoC). Выполнено всесторонний анализ архитектурных особенностей и предоставлена ​​широкая классификация FPGA-MPSoC. Приведены обзор последних исследований в области разработки FPGA-MPSoC. Представлен широкий круг таких систем с целью исследования всех тенденциях архитектуры и решаемых зада

    Mutual Impact between Clock Gating and High Level Synthesis in Reconfigurable Hardware Accelerators

    Get PDF
    With the diffusion of cyber-physical systems and internet of things, adaptivity and low power consumption became of primary importance in digital systems design. Reconfigurable heterogeneous platforms seem to be one of the most suitable choices to cope with such challenging context. However, their development and power optimization are not trivial, especially considering hardware acceleration components. On the one hand high level synthesis could simplify the design of such kind of systems, but on the other hand it can limit the positive effects of the adopted power saving techniques. In this work, the mutual impact of different high level synthesis tools and the application of the well known clock gating strategy in the development of reconfigurable accelerators is studied. The aim is to optimize a clock gating application according to the chosen high level synthesis engine and target technology (Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA)). Different levels of application of clock gating are evaluated, including a novel multi level solution. Besides assessing the benefits and drawbacks of the clock gating application at different levels, hints for future design automation of low power reconfigurable accelerators through high level synthesis are also derived

    FPGA-Based PUF Designs: A Comprehensive Review and Comparative Analysis

    Get PDF
    Field-programmable gate arrays (FPGAs) have firmly established themselves as dynamic platforms for the implementation of physical unclonable functions (PUFs). Their intrinsic reconfigurability and profound implications for enhancing hardware security make them an invaluable asset in this realm. This groundbreaking study not only dives deep into the universe of FPGA-based PUF designs but also offers a comprehensive overview coupled with a discerning comparative analysis. PUFs are the bedrock of device authentication and key generation and the fortification of secure cryptographic protocols. Unleashing the potential of FPGA technology expands the horizons of PUF integration across diverse hardware systems. We set out to understand the fundamental ideas behind PUF and how crucially important it is to current security paradigms. Different FPGA-based PUF solutions, including static, dynamic, and hybrid systems, are closely examined. Each design paradigm is painstakingly examined to reveal its special qualities, functional nuances, and weaknesses. We closely assess a variety of performance metrics, including those related to distinctiveness, reliability, and resilience against hostile threats. We compare various FPGA-based PUF systems against one another to expose their unique advantages and disadvantages. This study provides system designers and security professionals with the crucial information they need to choose the best PUF design for their particular applications. Our paper provides a comprehensive view of the functionality, security capabilities, and prospective applications of FPGA-based PUF systems. The depth of knowledge gained from this research advances the field of hardware security, enabling security practitioners, researchers, and designers to make wise decisions when deciding on and implementing FPGA-based PUF solutions.publishedVersio

    A Comprehensive Framework for Fair and Efficient Benchmarking of Hardware Implementations of Lightweight Cryptography

    Get PDF
    In this paper, we propose a comprehensive framework for fair and efficient benchmarking of hardware implementations of lightweight cryptography (LWC). Our framework is centered around the hardware API (Application Programming Interface) for the implementations of lightweight authenticated ciphers, hash functions, and cores combining both functionalities. The major parts of our API include the minimum compliance criteria, interface, and communication protocol supported by the LWC core. The proposed API is intended to meet the requirements of all candidates submitted to the NIST Lightweight Cryptography standardization process, as well as all CAESAR candidates and current authenticated cipher and hash function standards. In order to speed-up the development of hardware implementations compliant with this API, we are making available the LWC Development Package and the corresponding Implementer’s Guide. Equipped with these resources, hardware designers can focus on implementing only a core functionality of a given algorithm. The development package facilitates the communication with external modules, full verification of the LWC core using simulation, and generation of optimized results. The proposed API for lightweight cryptography is a superset of the CAESAR Hardware API, endorsed by the organizers of the CAESAR competition, which was successfully used in the development of over 50 implementations of Round 2 and Round 3 CAESAR candidates. The primary extensions include support for optional hash functionality and the development of cores resistant against side-channel attacks. Similarly, the LWC Development Package is a superset of the part of the CAESAR Development Package responsible for support of Use Case 1 (lightweight) CAESAR candidates. The primary extensions include support for hash functionality, increasing the flexibility of the code shared among all candidates, as well as extended support for the detection of errors preventing the correct operation of cores during experimental testing. Overall, our framework supports (a) fair ranking of candidates in the NIST LWC standardization process from the point of view of their efficiency in hardware before and after the implementation of countermeasures against side-channel attacks, (b) ability to perform benchmarking within the limited time devoted to Round2 and any subsequent rounds of the NIST LWC standardization process, (c) compatibility among implementations of the same algorithm by different designers and (d) fast deployment of the best algorithms in real-life applications

    ECC on Your Fingertips: A Single Instruction Approach for Lightweight ECC Design in GF (p)

    Get PDF
    Lightweight implementation of Elliptic Curve Cryptography on FPGA has been a popular research topic due to the boom of ubiquitous computing. In this paper we propose a novel single instruction based ultra-light ECC crypto-processor coupled with dedicated hard-IPs of the FPGAs. We show that by using the proposed single instruction framework and using the available block RAMs and DSPs of FPGAs, we can design an ECC crypto-processor for NIST curve P-256, requiring only 81 and 72 logic slices on Virtes-5 and Spartan-6 devices respectively.To the best of our knowledge, this is the first implementation of ECC which requires less than 100 slices on any FPGA device family

    Runtime Adaptive Hybrid Query Engine based on FPGAs

    Get PDF
    This paper presents the fully integrated hardware-accelerated query engine for large-scale datasets in the context of Semantic Web databases. As queries are typically unknown at design time, a static approach is not feasible and not flexible to cover a wide range of queries at system runtime. Therefore, we introduce a runtime reconfigurable accelerator based on a Field Programmable Gate Array (FPGA), which transparently incorporates with the freely available Semantic Web database LUPOSDATE. At system runtime, the proposed approach dynamically generates an optimized hardware accelerator in terms of an FPGA configuration for each individual query and transparently retrieves the query result to be displayed to the user. During hardware-accelerated execution the host supplies triple data to the FPGA and retrieves the results from the FPGA via PCIe interface. The benefits and limitations are evaluated on large-scale synthetic datasets with up to 260 million triples as well as the widely known Billion Triples Challenge

    Comparative Study of Keccak SHA-3 Implementations

    Get PDF
    This paper conducts an extensive comparative study of state-of-the-art solutions for im- plementing the SHA-3 hash function. SHA-3, a pivotal component in modern cryptography, has spawned numerous implementations across diverse platforms and technologies. This research aims to provide valuable insights into selecting and optimizing Keccak SHA-3 implementations. Our study encompasses an in-depth analysis of hardware, software, and software–hardware (hybrid) solutions. We assess the strengths, weaknesses, and performance metrics of each approach. Critical factors, including computational efficiency, scalability, and flexibility, are evaluated across differ- ent use cases. We investigate how each implementation performs in terms of speed and resource utilization. This research aims to improve the knowledge of cryptographic systems, aiding in the informed design and deployment of efficient cryptographic solutions. By providing a comprehensive overview of SHA-3 implementations, this study offers a clear understanding of the available options and equips professionals and researchers with the necessary insights to make informed decisions in their cryptographic endeavors
    corecore