57 research outputs found

    CPW-coupled-fed elliptical monopole antenna for UWB applications

    Get PDF
    IEEE Radio Wireless Week 2012 (RWW2012)In this paper, a coplanar-waveguide (CPW)-coupled-fed elliptical monopole antenna (CCFEMA) is presented for UWB applications. The antenna has a large bandwidth covering the frequency band from 2.8 GHz to 16.5 GHz with return loss larger than 10 dB and radiation pattern similar to that of a dipole antenna. With an appropriate modification of the radiation patches, a band-notched antenna based on the CCFEMA can also be designed to have a good band-notched performance for the band from 5.0 GHz to 6.0 GHz to avoid interfering with WLAN. The return loss, radiation pattern, peak gain, efficiency and band-notched characteristic of the antenna are studied using computer simulation. For verification, a prototyped antenna is also fabricated and then measured using the antenna measurement system, Satimo Starlab. The results show that the proposed antenna is a good candidate for UWB applications. © 2012 IEEE.published_or_final_versionThe 2012 IEEE Radio and Wireless Symposium (RWS), Santa Clara, CA., 15-18 January 2012. In IEEE Radio and Wireless Symposium Proceedings, 2012, p. 295-29

    Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis: A comprehensive review

    Get PDF
    Today’s rapid growth of elderly populations and aging problems coupled with the prevalence of obstructive sleep apnea (OSA) and other health related issues have affected many aspects of society. This has led to high demands for a more robust healthcare monitoring, diagnosing and treatments facilities. In particular to Sleep Medicine, sleep has a key role to play in both physical and mental health. The quality and duration of sleep have a direct and significant impact on people’s learning, memory, metabolism, weight, safety, mood, cardio-vascular health, diseases, and immune system function. The gold-standard for OSA diagnosis is the overnight sleep monitoring system using polysomnography (PSG). However, despite the quality and reliability of the PSG system, it is not well suited for long-term continuous usage due to limited mobility as well as causing possible irritation, distress, and discomfort to patients during the monitoring process. These limitations have led to stronger demands for non-contact sleep monitoring systems. The aim of this paper is to provide a comprehensive review of the current state of non-contact Doppler radar sleep monitoring technology and provide an outline of current challenges and make recommendations on future research directions to practically realize and commercialize the technology for everyday usage

    Revisiting Lightweight Encryption for IoT Applications: Error Performance and Throughput in Wireless Fading Channels with and without Coding

    Get PDF
    © 2013 IEEE. Employing heavy conventional encryption algorithms in communications suffers from added overhead and processing time delay; and in wireless communications, in particular, suffers from severe performance deterioration (avalanche effect) due to fading. Consequently, a tremendous reduction in data throughput and increase in complexity and time delay may occur especially when information traverse resource-limited devices as in Internet-of-Things (IoT) applications. To overcome these drawbacks, efficient lightweight encryption algorithms have been recently proposed in literature. One of those, that is of particular interest, requires using conventional encryption only for the first block of data in a given frame being transmitted. All the information in the remaining blocks is transmitted securely without the need for using heavy conventional encryption. Unlike the conventional encryption algorithms, this particular algorithm achieves lower overhead/complexity and higher data throughput. Assuming the additive white Gaussian noise (AWGN) channel, the performance of the lightweight encryption algorithm under study had been evaluated in literature in terms of throughput under the assumption that the first block, that undergoes conventional encryption, is free of error, which is practically unfeasible. In this paper, we consider the AWGN channel with Rayleigh fading and assume that the signal experiences a certain channel bit error probability and investigate the performance of the lightweight encryption algorithm under study in terms of bit error probability and throughput. We derive analytical expressions for these performance metrics considering modulated signals with and without coding. In addition, we propose an extension to the lightweight encryption algorithm under study by further enhancing its security level without significantly affecting the overhead size and processing time. Via numerical results we show the superiority of the lightweight encryption algorithm under study over the conventional encryption algorithms (like the AES) and the lightweight encryption algorithms proposed in literature in terms of error and throughput performance

    Doppler Radar-Based Non-Contact Health Monitoring for Obstructive Sleep Apnea Diagnosis: A Comprehensive Review

    Full text link
    Today’s rapid growth of elderly populations and aging problems coupled with the prevalence of obstructive sleep apnea (OSA) and other health related issues have affected many aspects of society. This has led to high demands for a more robust healthcare monitoring, diagnosing and treatments facilities. In particular to Sleep Medicine, sleep has a key role to play in both physical and mental health. The quality and duration of sleep have a direct and significant impact on people’s learning, memory, metabolism, weight, safety, mood, cardio-vascular health, diseases, and immune system function. The gold-standard for OSA diagnosis is the overnight sleep monitoring system using polysomnography (PSG). However, despite the quality and reliability of the PSG system, it is not well suited for long-term continuous usage due to limited mobility as well as causing possible irritation, distress, and discomfort to patients during the monitoring process. These limitations have led to stronger demands for non-contact sleep monitoring systems. The aim of this paper is to provide a comprehensive review of the current state of non-contact Doppler radar sleep monitoring technology and provide an outline of current challenges and make recommendations on future research directions to practically realize and commercialize the technology for everyday usage.</jats:p

    How to stretch system reliability exploiting mission constraints: A practical roadmap for industries

    Get PDF
    Reliability analysis can be committed to companies by customers willing to verify whether their products comply with the major international standards or simply to verify the design prior of market deployment. Nevertheless, these analyses may be required at the very preliminary stages of design or when the design is already in progress due to low organizational capabilities or simple delay in the project implementation process. The results sometime maybe be far from the market or customer target with a subsequent need to redesign the whole asset. Of course, not all the cases fall in the worst scenario and maybe with some additional consideration on mission definition it is possible to comply with the proposed reliability targets. In this paper the author will provide an overview on the approach which could be followed to achieve the reliability target even when the project is still on-going providing a practical case study

    Electromagnetic Performance Estimation of UHF RFID Tags in Harsh Contexts

    Get PDF
    Radio-Frequency Identification (RFID) technology is a consolidated example of electromagnetic system in which passive labels equipped with flexible antennas, called tags, are able to use a portion of the electromagnetic energy from the reader antennas, power-up their internal circuitry and provide the automatic identification of objects. Being fully-passive, the performance of RFID tags is strongly dependent on the context, so that the selection of the most suitable tag for the specific application becomes a key point. In this work, a cost-effective but accurate system for the over-the-air electromagnetic characterization of assembled UHF RFID tags is firstly presented and then validated through comparison with a consolidated and diffused measurement systems. Moreover, challenging use-cases demonstrating the usefulness of the proposed systems in analyzing the electromagnetic performance of label-type tags also when applied on materials on different shape or embedded into concrete blocks have been carried out

    Analog‐to‐Digital Conversion for Cognitive Radio: Subsampling, Interleaving, and Compressive Sensing

    Get PDF
    This chapter explores different analog-to-digital conversion techniques that are suitable to be implemented in cognitive radio receivers. This chapter details the fundamentals, advantages, and drawbacks of three promising techniques: subsampling, interleaving, and compressive sensing. Due to their major maturity, subsampling- and interleaving-based systems are described in further detail, whereas compressive sensing-based systems are described as a complement of the previous techniques for underutilized spectrum applications. The feasibility of these techniques as part of software-defined radio, multistandard, and spectrum sensing receivers is demonstrated by proposing different architectures with reduced complexity at circuit level, depending on the application requirements. Additionally, the chapter proposes different solutions to integrate the advantages of these techniques in a unique analog-to-digital conversion process

    An IoT-aware Architecture to improve Safety in Sports Environments

    Get PDF
    The introduction of Internet of Things enabling technologies into the sport and recreational activities domain provide an interesting research challenge. Their adoption could significantly improve the sport experience and also the safety level of team sports. Despite this, only few attempts have been done to demonstrate the benefits provided by use of IoT technologies in sport environments. To fill this gap, this paper propose an IoT-aware Sport System based on the jointly use of different innovative technologies and standards. By exploiting the potentialities offered by an ultra-low-power Hybrid Sensing Network (HSN), composed of 6LoWPAN nodes integrating UHF RFID functionalities, the system is able to collect, in real time, both environmental parameters and players’ physiological data. Sensed data are then delivered to a Cloud platform where a monitoring application makes them easily accessible via REST Web Services. A simple proof of concept has demonstrated the appropriateness of the proposed solution

    Definition, Characteristics and Determining Parameters of Antennas in Terms of Synthesizing the Interrogation Zone in RFID Systems

    Get PDF
    The radio frequency identification (RFID) systems are gaining in popularity in automated processes of object identification in various socioeconomic areas. However, despite the existing belief, there is no universal RFID system on the commercial market that could be used in all user applications. All components of a developed solution should be carefully selected or designed according to the specification of objects being recognized and characteristics of their environment. In order to determine parameters of propagation or inductively coupled system, especially when it is dedicated to uncommon applications, a multiaspect analysis has to be taken into consideration. Due to complexity, the problem is reduced to analytical or experimental determination of RFID system operation range and a “trial and error” method is mostly used in the industry practice. In order to cope with the barriers existing in the RFID technology, the authors give the review of latest achievements in this field. They focus on the definition, comprehensive characteristics and determination of the antenna parameters. They also pay attention to the 3D interrogation zone (IZ) that is the main parameter in which multitude technical aspects of the RFID systems are gathered simultaneously, as regards the theoretical synthesis as well as market needs

    Opportunities and Challenges for Error Correction Scheme for Wireless Body Area Network: A Survey

    Get PDF
    This paper offers a review of different types of Error Correction Scheme (ECS) used in communication systems in general, which is followed by a summary of the IEEE standard for Wireless Body Area Network (WBAN). The possible types of channels and network models for WBAN are presented that are crucial to the design and implementation of ECS. Following that, a literature review on the proposed ECSs for WBAN is conducted based on different aspects. One aspect of the review is to examine what type of parameters are considered during the research work. The second aspect of the review is to analyse how the reliability is measured and whether the research works consider the different types of reliability and delay requirement for different data types or not. The review indicates that the current literatures do not utilize the constraints that are faced by WBAN nodes during ECS design. Subsequently, we put forward future research challenges and opportunities on ECS design and the implementation for WBAN when considering computational complexity and the energy-constrained nature of nodes
    • 

    corecore