871 research outputs found

    KYPO4INDUSTRY: A Testbed for Teaching Cybersecurity of Industrial Control Systems

    Get PDF
    There are different requirements on cybersecurity of industrial control systems and information technology systems. This fact exacerbates the global issue of hiring cybersecurity employees with relevant skills. In this paper, we present KYPO4INDUSTRY training facility and a course syllabus for beginner and intermediate computer science students to learn cybersecurity in a simulated industrial environment. The training facility is built using open-source hardware and software and provides reconfigurable modules of industrial control systems. The course uses a flipped classroom format with hands-on projects: the students create educational games that replicate real cyber attacks. Throughout the semester, they learn to understand the risks and gain capabilities to respond to cyber attacks that target industrial control systems. Our described experience from the design of the testbed and its usage can help any educator interested in teaching cybersecurity of cyber-physical systems

    Simurgh: a fully decentralized and secure NVMM user space file system

    Get PDF
    The availability of non-volatile main memory (NVMM) has started a new era for storage systems and NVMM specific file systems can support extremely high data and metadata rates, which are required by many HPC and data-intensive applications. Scaling metadata performance within NVMM file systems is nevertheless often restricted by the Linux kernel storage stack, while simply moving metadata management to the user space can compromise security or flexibility. This paper introduces Simurgh, a hardware-assisted user space file system with decentralized metadata management that allows secure metadata updates from within user space. Simurgh guarantees consistency, durability, and ordering of updates without sacrificing scalability. Security is enforced by only allowing NVMM access from protected user space functions, which can be implemented through two proposed instructions. Comparisons with other NVMM file systems show that Simurgh improves metadata performance up to 18x and application performance up to 89% compared to the second-fastest file system.This work has been supported by the European Comission’s BigStorage project H2020-MSCA-ITN2014-642963. It is also supported by the Big Data in Atmospheric Physics (BINARY) project, funded by the Carl Zeiss Foundation under Grant No.: P2018-02-003.Peer ReviewedPostprint (author's final draft

    Understanding (Un)Written Contracts of NVMe ZNS Devices with zns-tools

    Get PDF
    Operational and performance characteristics of flash SSDs have long been associated with a set of Unwritten Contracts due to their hidden, complex internals and lack of control from the host software stack. These unwritten contracts govern how data should be stored, accessed, and garbage collected. The emergence of Zoned Namespace (ZNS) flash devices with their open and standardized interface allows us to write these unwritten contracts for the storage stack. However, even with a standardized storage-host interface, due to the lack of appropriate end-to-end operational data collection tools, the quantification and reasoning of such contracts remain a challenge. In this paper, we propose zns.tools, an open-source framework for end-to-end event and metadata collection, analysis, and visualization for the ZNS SSDs contract analysis. We showcase how zns.tools can be used to understand how the combination of RocksDB with the F2FS file system interacts with the underlying storage. Our tools are available openly at \url{https://github.com/stonet-research/zns-tools}

    Understanding (Un)Written Contracts of NVMe ZNS Devices with zns-tools

    Full text link
    Operational and performance characteristics of flash SSDs have long been associated with a set of Unwritten Contracts due to their hidden, complex internals and lack of control from the host software stack. These unwritten contracts govern how data should be stored, accessed, and garbage collected. The emergence of Zoned Namespace (ZNS) flash devices with their open and standardized interface allows us to write these unwritten contracts for the storage stack. However, even with a standardized storage-host interface, due to the lack of appropriate end-to-end operational data collection tools, the quantification and reasoning of such contracts remain a challenge. In this paper, we propose zns.tools, an open-source framework for end-to-end event and metadata collection, analysis, and visualization for the ZNS SSDs contract analysis. We showcase how zns.tools can be used to understand how the combination of RocksDB with the F2FS file system interacts with the underlying storage. Our tools are available openly at \url{https://github.com/stonet-research/zns-tools}

    EnergAt: Fine-Grained Energy Attribution for Multi-Tenancy

    Full text link
    In the post-Moore's Law era, relying solely on hardware advancements for automatic performance gains is no longer feasible without increased energy consumption, due to the end of Dennard scaling. Consequently, computing accounts for an increasing amount of global energy usage, contradicting the objective of sustainable computing. The lack of hardware support and the absence of a standardized, software-centric method for the precise tracing of energy provenance exacerbates the issue. Aiming to overcome this challenge, we argue that fine-grained software energy attribution is attainable, even with limited hardware support. To support our position, we present a thread-level, NUMA-aware energy attribution method for CPU and DRAM in multi-tenant environments. The evaluation of our prototype implementation, EnergAt, demonstrates the validity, effectiveness, and robustness of our theoretical model, even in the presence of the noisy-neighbor effect. We envisage a sustainable cloud environment and emphasize the importance of collective efforts to improve software energy efficiency.Comment: 8 pages, 4 figures; Published in HotCarbon 2023; Artifact available at https://github.com/HongyuHe/energa
    • …
    corecore