16 research outputs found

    A Plug and Produce Framework for Industrial Collaborative Robots

    Get PDF

    A fully-autonomous hovercraft inspired by bees: wall following and speed control in straight and tapered corridors

    No full text
    International audienceThe small autonomous vehicles of the future will have to navigate close to obstacles in highly unpredictable environments. Risky tasks of this kind may require novel sensors and control methods that differ from conventional approaches. Recent ethological findings have shown that complex navigation tasks such as obstacle avoidance and speed control are performed by flying insects on the basis of optic flow (OF) cues, although insects' compound eyes have a very poor spatial resolution. The present paper deals with the implementation of an optic flow-based autopilot on a fully autonomous hovercraft. Tests were performed on this small (878-gram) innovative robotic platform in straight and tapered corridors lined with natural panoramas. A bilateral OF regulator controls the robot's forward speed (up to 0.8 m/s), while a unilateral OF regulator controls the robot's clearance from the two walls. A micro-gyrometer and a tiny magnetic compass ensure that the hovercraft travels forward in the corridor without yawing. The lateral OFs are measured by two minimalist eyes mounted sideways opposite to each other. For the first time, the hovercraft was found to be capable of adjusting both its forward speed and its clearance from the walls, in both straight and tapered corridors, without requiring any distance or speed measurements}, that is, without any need for on-board rangefinders or tachometers

    Received strength signal intensity performance analysis in wireless sensor network using Arduino platform and XBee wireless modules

    Get PDF
    Today, through the monitoring of agronomic variables, the wireless sensor networks are playing an increasingly important role in precision agriculture. Among the emerging technologies used to develop prototypes related to wireless sensor network, we find the Arduino platform and XBee radio modules from the DIGI Company. In this article, based on field tests, we conducted a comparative analysis of received strength signal intensity levels, calculation of path loss with “log-normal shadowing” and free-space path loss models. In addition, we measure packet loss for different transmission, distances and environments with respect to an “Arduino Mega” board, and radio modules XBee PRO S1 and XBee Pro S2. The tests for the packet loss and received strength signal intensity level show the best performance for the XBee Pro S2 in the indoor, outdoor, and rural scenarios

    Enhanced Positioning Algorithm Using a Single Image in an LCD-Camera System by Mesh Elements' Recalculation and Angle Error Orientation

    Get PDF
    In this article, we present a method to position the tool in a micromachine system based on a camera-LCD screen positioning system that also provides information about angular deviations of the tool axis during its running. Both position and angular deviations are obtained by reducing a matrix of LEDs in the image to a single rectangle in the conical perspective that is treated by a photogrammetry method. This method computes the coordinates and orientation of the camera with respect to the fixed screen coordinate system. The used image consists of 5 × 5 lit LEDs, which are analyzed by the algorithm to determine a rectangle with known dimensions. The coordinates of the vertices of the rectangle in space are obtained by an inverse perspective computation from the image. The method presents a good approximation of the central point of the rectangle and provides the inclination of the workpiece with respect to the LCD screen reference system of coordinates. A test of the method is designed with the assistance of a Coordinate Measurement Machine (CMM) to check the accuracy of the positioning method. The performed test delivers a good accuracy in the position measurement of the designed method. A high dispersion in the angular deviation is detected, although the orientation of the inclination is appropriate in almost every case. This is due to the small values of the angles that makes the trigonometric function approximations very erratic. This method is a good starting point for the compensation of angular deviation in vision based micromachine tools, which is the principal source of errors in these operations and represents the main volume in the cost of machine elements’ parts.The authors want to thank the University Center of Defense at the Spanish Air Force Academy, MDE-UPCT, for financial suppor

    Modular Self-Reconfigurable Robotic Systems: A Survey on Hardware Architectures

    Get PDF
    Modular self-reconfigurable robots present wide and unique solutions for growing demands in the domains of space exploration, automation, consumer products, and so forth. The higher utilization factor and self-healing capabilities are most demanded traits in robotics for real world applications and modular robotics offer better solutions in these perspectives in relation to traditional robotics. The researchers in robotics domain identified various applications and prototyped numerous robotic models while addressing constraints such as homogeneity, reconfigurability, form factor, and power consumption. The diversified nature of various modular robotic solutions proposed for real world applications and utilization of different sensor and actuator interfacing techniques along with physical model optimizations presents implicit challenges to researchers while identifying and visualizing the merits/demerits of various approaches to a solution. This paper attempts to simplify the comparison of various hardware prototypes by providing a brief study on hardware architectures of modular robots capable of self-healing and reconfiguration along with design techniques adopted in modeling robots, interfacing technologies, and so forth over the past 25 years

    User Based Development and Test of the EXOTIC Exoskeleton:Empowering Individuals with Tetraplegia Using a Compact, Versatile, 5-DoF Upper Limb Exoskeleton Controlled through Intelligent Semi-Automated Shared Tongue Control

    Get PDF
    This paper presents the EXOTIC- a novel assistive upper limb exoskeleton for individuals with complete functional tetraplegia that provides an unprecedented level of versatility and control. The current literature on exoskeletons mainly focuses on the basic technical aspects of exoskeleton design and control while the context in which these exoskeletons should function is less or not prioritized even though it poses important technical requirements. We considered all sources of design requirements, from the basic technical functions to the real-world practical application. The EXOTIC features: (1) a compact, safe, wheelchair-mountable, easy to don and doff exoskeleton capable of facilitating multiple highly desired activities of daily living for individuals with tetraplegia; (2) a semi-automated computer vision guidance system that can be enabled by the user when relevant; (3) a tongue control interface allowing for full, volitional, and continuous control over all possible motions of the exoskeleton. The EXOTIC was tested on ten able-bodied individuals and three users with tetraplegia caused by spinal cord injury. During the tests the EXOTIC succeeded in fully assisting tasks such as drinking and picking up snacks, even for users with complete functional tetraplegia and the need for a ventilator. The users confirmed the usability of the EXOTIC

    Bio-inspired knee joint: Trends in the hardware systems development

    Get PDF
    The knee joint is a complex structure that plays a significant role in the human lower limb for locomotion activities in daily living. However, we are still not quite there yet where we can replicate the functions of the knee bones and the attached ligaments to a significant degree of success. This paper presents the current trend in the development of knee joints based on bio-inspiration concepts and modern bio-inspired knee joints in the research field of prostheses, power-assist suits and mobile robots. The paper also reviews the existing literature to describe major turning points during the development of hardware and control systems associated with bio-inspired knee joints. The anatomy and biomechanics of the knee joint are initially presented. Then the latest bio-inspired knee joints developed within the last 10 years are briefly reviewed based on bone structure, muscle and ligament structure and control strategies. A leg exoskeleton is then introduced for enhancing the functionality of the human lower limb that lacks muscle power. The design consideration, novelty of the design and the working principle of the proposed knee joint are summarized. Furthermore, the simulation results and experimental results are also presented and analyzed. Finally, the paper concludes with design difficulties, design considerations and future directions on bio-inspired knee joint design. The aim of this paper is to be a starting point for researchers keen on understanding the developments throughout the years in the field of bio-inspired knee joints

    An ambient assisted living solution for mobile environments

    Get PDF
    An Ambient Assisted Living (AAL) mobile health application solution with biofeedback based on body sensors is very useful to perform a data collection for diagnosis in patients whose clinical conditions are not favourable. This system allows comfort, mobility, and efficiency in all the process of data collection providing more confidence and operability. A physical fall may be considered something natural in the life span of a human being from birth to death. In a perfect scenario it would be possible to predict when a fall will occur in order to avoid it. Falls represent a high risk for senior people health. Those falls can cause fractures or injuries causing great dependence and debilitation to the elderly and even death in extreme cases. Falls can be detected by the accelerometer included in most of the available mobile phones or portable digital assistants (PDAs). To reverse this tendency, it can be obtained more accurate data for patients monitoring from the body sensors attached to the human body (such as, electrocardiogram (ECG), electromyography (EMG), blood volume pulse (BVP), electro dermal activity (EDA), and galvanic skin response (GSR)). Then, this dissertation reviews the related literature on this topic and introduces a mobile solution for falls prevention, detection, and biofeedback monitoring. The proposed system collects sensed data that is sent to a smartphone or tablet through Bluetooth. Mobile devices are used to process and display information graphically to users. The falls prevention system uses collected data from sensors in order to control and advice the patient or even to give instructions to treat an abnormal condition to reduce the falls risk. In cases of symptoms that last more time it can even detect a possible disease. The signal processing algorithms plays a key role in the fall prevention system. These algorithms in real time, through the capture of biofeedback data, are needed to extract relevant information from the signals detected to warn the patient. Monitoring and processing data from sensors is realized by a smartphone or tablet that will send warnings to users. All the process is performed in real time. These mobile devices are also used as a gateway to send the collected data to a Web service, which subsequently allows data storage and consultation. The proposed system is evaluated, demonstrated, and validated through a prototype and it is ready for use

    Current state of digital signal processing in myoelectric interfaces and related applications

    Get PDF
    This review discusses the critical issues and recommended practices from the perspective of myoelectric interfaces. The major benefits and challenges of myoelectric interfaces are evaluated. The article aims to fill gaps left by previous reviews and identify avenues for future research. Recommendations are given, for example, for electrode placement, sampling rate, segmentation, and classifiers. Four groups of applications where myoelectric interfaces have been adopted are identified: assistive technology, rehabilitation technology, input devices, and silent speech interfaces. The state-of-the-art applications in each of these groups are presented.Peer reviewe
    corecore