99 research outputs found

    Past, present and future of mobile payments research: A literature review

    Get PDF
    The mobile payment services markets are currently under transition with a history of numerous tried and failed solutions, and a future of promising but yet uncertain possibilities with potential new technology innovations. At this point of the development, we take a look at the current state of the mobile payment services market from a literature review perspective. We review prior literature on mobile payments, analyze the various factors that impact mobile payment services markets, and suggest directions for future research in this still emerging field. To facilitate the analysis of literature, we propose a framework of four contingency and five competitive force factors, and organize the mobile payment research under the proposed framework. Consumer perspective of mobile payments as well as technical security and trust are best covered by contemporary research. The impacts of social and cultural factors on mobile payments, as well as comparisons between mobile and traditional payment services are entirely uninvestigated issues. Most of the factors outlined by the framework have been addressed by exploratory and early phase studies. </p

    Distributed Web Service Coordination for Collaboration Applications and Biological Workflows

    Get PDF
    In this dissertation work, we have investigated the main research thrust of decentralized coordination of workflows over web services. To address distributed workflow coordination, first we have developed “Web Coordination Bonds” as a capable set of dependency modeling primitives that enable each web service to manage its own dependencies. Web bond primitives are as powerful as extended Petri nets and have sufficient modeling and expressive capabilities to model workflow dependencies. We have designed and prototyped our “Web Service Coordination Management Middleware” (WSCMM) system that enhances current web services infrastructure to accommodate web bond enabled web services. Finally, based on core concepts of web coordination bonds and WSCMM, we have developed the “BondFlow” system that allows easy configuration distributed coordination of workflows. The footprint of the BonFlow runtime is 24KB and the additional third party software packages, SOAP client and XML parser, account for 115KB

    Air Force Institute of Technology Research Report 2011

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Faculty Publications & Presentations, 2001-2002

    Get PDF

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    Investigating T-Way Test Data Reduction Strategy Using Particle Swarm Optimization Technique

    Get PDF

    Trust Evaluation in the IoT Environment

    Get PDF
    Along with the many benefits of IoT, its heterogeneity brings a new challenge to establish a trustworthy environment among the objects due to the absence of proper enforcement mechanisms. Further, it can be observed that often these encounters are addressed only concerning the security and privacy matters involved. However, such common network security measures are not adequate to preserve the integrity of information and services exchanged over the internet. Hence, they remain vulnerable to threats ranging from the risks of data management at the cyber-physical layers, to the potential discrimination at the social layer. Therefore, trust in IoT can be considered as a key property to enforce trust among objects to guarantee trustworthy services. Typically, trust revolves around assurance and confidence that people, data, entities, information, or processes will function or behave in expected ways. However, trust enforcement in an artificial society like IoT is far more difficult, as the things do not have an inherited judgmental ability to assess risks and other influencing factors to evaluate trust as humans do. Hence, it is important to quantify the perception of trust such that it can be understood by the artificial agents. In computer science, trust is considered as a computational value depicted by a relationship between trustor and trustee, described in a specific context, measured by trust metrics, and evaluated by a mechanism. Several mechanisms about trust evaluation can be found in the literature. Among them, most of the work has deviated towards security and privacy issues instead of considering the universal meaning of trust and its dynamic nature. Furthermore, they lack a proper trust evaluation model and management platform that addresses all aspects of trust establishment. Hence, it is almost impossible to bring all these solutions to one place and develop a common platform that resolves end-to-end trust issues in a digital environment. Therefore, this thesis takes an attempt to fill these spaces through the following research work. First, this work proposes concrete definitions to formally identify trust as a computational concept and its characteristics. Next, a well-defined trust evaluation model is proposed to identify, evaluate and create trust relationships among objects for calculating trust. Then a trust management platform is presented identifying the major tasks of trust enforcement process including trust data collection, trust data management, trust information analysis, dissemination of trust information and trust information lifecycle management. Next, the thesis proposes several approaches to assess trust attributes and thereby the trust metrics of the above model for trust evaluation. Further, to minimize dependencies with human interactions in evaluating trust, an adaptive trust evaluation model is presented based on the machine learning techniques. From a standardization point of view, the scope of the current standards on network security and cybersecurity needs to be expanded to take trust issues into consideration. Hence, this thesis has provided several inputs towards standardization on trust, including a computational definition of trust, a trust evaluation model targeting both object and data trust, and platform to manage the trust evaluation process
    corecore