862 research outputs found

    Feature extraction for range image interpretation using local topology statistics

    Get PDF
    This thesis presents an approach for interpreting range images of known subject matter, such as the human face, based on the extraction and matching of local features from the images. In recent years, approaches to interpret two-dimensional (2D) images based on local feature extraction have advanced greatly, for example, systems such as Scale Invariant Feature Transform (SIFT) can detect and describe the local features in the 2D images effectively. With the aid of rapidly advancing three-dimensional (3D) imaging technology, in particular, the advent of commercially available surface scanning systems based on photogrammetry, image representation has been able to extend into the third dimension. Moreover, range images confer a number of advantages over conventional 2D images, for instance, the properties of being invariant to lighting, pose and viewpoint changes. As a result, an attempt has been made in this work to establish how best to represent the local range surface with a feature descriptor, thereby developing a matching system that takes advantages of the third dimension present in the range images and casting this in the framework of an existing scale and rotational invariance recognition technology: SIFT. By exploring the statistical representations of the local variation, it is possible to represent and match range images of human faces. This can be achieved by extracting unique mathematical keys known as feature descriptors, from the various automatically generated stable keypoint locations of the range images, thereby capturing the local information of the distributions of the mixes of surface types and their orientations simultaneously. Keypoints are generated through scale-space approach, where the (x,y) location and the appropriate scale (sigma) are detected. In order to achieve invariance to in-plane viewpoint rotational changes, a consistent canonical orientation is assigned to each keypoint and the sampling patch is rotated to this canonical orientation. The mixes of surface types, derived using the shape index, and the image gradient orientations are extracted from each sampling patch by placing nine overlapping Gaussian sub-regions over the measurement aperture. Each of the nine regions is overlapped by one standard deviation in order to minimise the occurrence of spatial aliasing during the sampling stages and to provide a better continuity within the descriptor. Moreover, surface normals can be computed from each of the keypoint location, allowing the local 3D pose to be estimated and corrected within the feature descriptors since the orientations in which the images were captured are unknown a priori. As a result, the formulated feature descriptors have strong discriminative power and are stable to rotational changes

    Dense 3D Object Reconstruction from a Single Depth View

    Get PDF
    In this paper, we propose a novel approach, 3D-RecGAN++, which reconstructs the complete 3D structure of a given object from a single arbitrary depth view using generative adversarial networks. Unlike existing work which typically requires multiple views of the same object or class labels to recover the full 3D geometry, the proposed 3D-RecGAN++ only takes the voxel grid representation of a depth view of the object as input, and is able to generate the complete 3D occupancy grid with a high resolution of 256^3 by recovering the occluded/missing regions. The key idea is to combine the generative capabilities of autoencoders and the conditional Generative Adversarial Networks (GAN) framework, to infer accurate and fine-grained 3D structures of objects in high-dimensional voxel space. Extensive experiments on large synthetic datasets and real-world Kinect datasets show that the proposed 3D-RecGAN++ significantly outperforms the state of the art in single view 3D object reconstruction, and is able to reconstruct unseen types of objects.Comment: TPAMI 2018. Code and data are available at: https://github.com/Yang7879/3D-RecGAN-extended. This article extends from arXiv:1708.0796

    Communication-Avoiding Optimization Methods for Distributed Massive-Scale Sparse Inverse Covariance Estimation

    Full text link
    Across a variety of scientific disciplines, sparse inverse covariance estimation is a popular tool for capturing the underlying dependency relationships in multivariate data. Unfortunately, most estimators are not scalable enough to handle the sizes of modern high-dimensional data sets (often on the order of terabytes), and assume Gaussian samples. To address these deficiencies, we introduce HP-CONCORD, a highly scalable optimization method for estimating a sparse inverse covariance matrix based on a regularized pseudolikelihood framework, without assuming Gaussianity. Our parallel proximal gradient method uses a novel communication-avoiding linear algebra algorithm and runs across a multi-node cluster with up to 1k nodes (24k cores), achieving parallel scalability on problems with up to ~819 billion parameters (1.28 million dimensions); even on a single node, HP-CONCORD demonstrates scalability, outperforming a state-of-the-art method. We also use HP-CONCORD to estimate the underlying dependency structure of the brain from fMRI data, and use the result to identify functional regions automatically. The results show good agreement with a clustering from the neuroscience literature.Comment: Main paper: 15 pages, appendix: 24 page

    Face recognition in 2D and 2.5D using ridgelets and photometric stereo

    Get PDF
    A new technique for face recognition - Ridgefaces - is presented. The method combines the well-known Fisherface method with the ridgelet transform and high-speed Photometric Stereo (PS). The paper first derives ridgelet projections for 2D/2.5D face images before the Fisherface approach is used to reduce the dimensionality and increase the spread of the resulting feature vectors. The ridgelet transform is attractive because it is efficient at extracting highly discriminating low-frequency directional features. Best recognition is obtained when Ridgefaces is performed on surface normals acquired from PS, although good results are also found using standard 2D images and PS-derived albedo maps. © 2012 Elsevier Ltd. All rights reserved
    • …
    corecore