10 research outputs found

    Bidirectional High Current DC/DC Converters for Capacitive Deionisation Water Treatment

    Full text link
    This thesis proposes three new DC/DC topologies and related technologies to control salt removal from water sources using the capacitive deionisation (CDI) technique. These technologies are critical in improving energy utilization, higher product yield and water recovery, and simpler design. A lossless bidirectional current sensing circuit is proposed. The proposed circuit avoids the use of conventional current shunt and extracts the current information from the winding resistance of the inductor (DCR) without introducing excessive conduction loss. Moreover, this improved DCR current sensing circuit has a high bandwidth and a low error over the entire range, even near the zero-crossing. A successful application of the proposed circuit is demonstrated in a 5-phase interleaved Buck/Boost bidirectional converter. The same converter has been used for CDI cell characterization. A time-domain analysis of the three-phase interleaved LLC topology is presented. The proposed analysis method reveals various facts that cannot be explained with the conventional Fundamental Harmonic Analysis (FHA) methods, including the number of resonant frequencies. The theory also gives a more accurate prediction of the gain-frequency-power relationship and the soft-switching conditions. Extensive simulations and experiments validate the correctness of the theory. Two new switch-capacitor two-phase interleaved flyback converters are proposed, which can invert the polarity of the input voltage and efficiently supply a high current while inheriting all the advantages of the Buck and Boost counterparts, such as the intrinsic current sharing, high conversion ratio, lower current ripple, and reduced switching loss. The operating principle, key waveform, simulation, and experimental results are presented. Finally, a new two-phase interleaved bipolar four-quadrant converter is proposed. Without sacrificing efficiency, it enables high-current discharge at extremely low cell voltage and features seamless transition. The proposed converter combines the switch-capacitor flyback converter with the switched-capacitor Buck converter in a creative manner so that the input and the output share a common ground reference while featuring a bipolar output, which can simplify the wiring when connecting more units in parallel. A switching pattern is proposed to enable a seamless transition between different operation modes. An auxiliary switching network is introduced to correct the loss of natural inductor current balancing in the transition mode

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    RF Integrated Circuits for Energy Autonomous Sensor Nodes.

    Full text link
    The exponential growth in the semiconductor industry has enabled computers to pervade our everyday lives, and as we move forward many of these computers will have form factors much smaller than a typical laptop or smartphone. Sensor nodes will soon be deployed ubiquitously, capable of capturing information of their surrounding environment. The next step is to connect all these different nodes together into an entire interconnected system. This “Internet of Things” (IoT) vision has incredible potential to change our lives commercially, societally, and personally. The backbone of IoT is the wireless sensor node, many of which will operate under very rigorous energy constraints with small batteries or no batteries at all. It has been shown that in sensor nodes, radio communication is one of the biggest bottlenecks to ultra-low power design. This research explores ways to reduce energy consumption in radios for wireless sensor networks, allowing them to run off harvested energy, while maintaining qualities that will allow them to function in a real world, multi-user environment. Three different prototypes have been designed demonstrating these techniques. The first is a sensitivity-reduced nanowatt wake-up radio which allows a sensor node to actively listen for packets even when the rest of the node is asleep. CDMA codes and interference rejection reduce the potential for energy-costly false wake-ups. The second prototype is a full transceiver for a body-worn EKG sensor node. This transceiver is designed to have low instantaneous power and is able to receive 802.15.6 Wireless Body Area Network compliant packets. It uses asymmetric communication including a wake-up receiver based on the previous design, UWB transmitter and a communication receiver. The communication receiver has 10 physical channels to avoid interference and demodulates coherent packets which is uncommon for low power radios, but dictated by the 802.15.6 standard. The third prototype is a long range transceiver capable of >1km communication range in the 433MHz band and able to interface with an existing commercial radio. A digitally assisted baseband demodulator was designed which enables the ability to perform bit-level as well as packet-level duty cycling which increases the radio's energy efficiency.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110432/1/nerobert_1.pd

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    ICF Annual Report 1997

    Full text link
    corecore